New Renesas MCUs with high-resolution analog and Over-the-Air update support

Renesas has introduced the RA2A2 microcontroller (MCU) Group based on the Arm Cortex-M23 processor. The new, low-power devices offer a 24-bit Sigma-Delta analog-to-digital converter (SDADC), and an innovative dual-bank code flash and bank swap function that make it easy to implement firmware over-the-air (FOTA) updates for smart energy management, building automation, medical devices, consumer electronics and other IoT applications that can benefit from firmware updates.

The RA2A2 devices offer multiple power structures and voltage detection hardware to realize energy-efficient, ultra-low power operation as low as 100 µA/MHz in active mode and 0.40µA in software standby mode. An independent power supply real-time clock extends battery life for applications requiring long lifetime management in extreme conditions. The new MCUs also offer AES hardware acceleration, a high-precision (±1.0%), high-speed on-chip oscillator, a temperature sensor, and a wide operating voltage range from 1.6V to 5.5V.

RA2A2 MCUs contribute to the digitalization of conventional systems with key features including high-level analog sensing, FOTA support, 8KHz/4KHz hybrid sampling, and AES hardware accelerator functions. When the end-systems are digitalized, it is possible to analyse individual systems status seamlessly for further energy-efficient, streamlining system operation. For example, next generation smart electricity meters with Non-Intrusive Load Management (NILM) technology enable energy consumption monitoring based on detailed analysis of the current and voltage of the total load. The adoption of smart meters with NILM is the most cost-effective and scalable solution for increasing energy efficiency and lowering energy consumption.

The new RA2A2 Group MCUs are supported by Renesas’ Flexible Software Package (FSP). The FSP enables faster application development by providing all the infrastructure software needed, including multiple RTOS, BSP, peripheral drivers, middleware, connectivity, networking, and security stacks as well as reference software to build complex AI, motor control and cloud solutions. It allows customers to integrate their own legacy code and choice of RTOS with FSP, thus providing full flexibility in application development. Using the FSP will ease migration of RA2A2 designs to larger RA devices if customers wish to do so.

https://www.renesas.com/RA2A2

> Read More

u-blox launches new GNSS platform for enhanced positioning accuracy in urban environments

u-blox, has announced F10, the company’s first dual-band GNSS (Global Navigation Satellite Systems) platform combining L1 and L5 bands to offer enhanced multipath resistance and meter-level positioning accuracy. The platform caters to urban mobility applications, such as aftermarket telematics and micromobility.

Applications that use GNSS receivers for accurate positioning are on the rise. Yet, current receivers do not fully perform in urban areas. Accurate and reliable positioning in dense urban environments, where buildings or tree foliage can reflect satellite signals, requires GNSS receivers to mitigate multipath effects. The L5 band’s resilience to these effects significantly improves positioning accuracy. Combined with the well-established L1 band, an L1/L5 dual-band GNSS receiver can deliver < 2 m positioning accuracy (CEP50), against about 4 m with the L1 band only. The u-blox team has conducted driving tests in several urban areas, confirming a significant improvement over GNSS L1 receivers.

The F10’s firmware algorithm prioritises L5 band signals in weak signal environments, ensuring reliable positioning accuracy even when paired with small antennas. The platform is also equipped with protection-level technology that provides a real-time trustworthy positioning accuracy estimate.

When a cellular modem is extremely close to a GNSS receiver, it can interfere with the receiver’s reception. Some F10 module models (NEO-F10N, MAX-F10S, and MIA-F10Q) are equipped with a robust RF circuit that allows the GNSS and the cellular modem to operate without interference.

The u-blox F10 platform is pin-to-pin compatible with the previous u-blox M10 generation for easy migration. It also supports u-blox AssistNow, which offers real-time online A-GNSS service with global availability to reduce GNSS time-to-first-fix and power consumption.

https://www.u-blox.com

> Read More

ST reveals advanced ultra-low-power microcontrollers for industrial, medical, smart-metering, and consumer applications

ST has introduced a new generation of energy-conscious and cost-effective microcontrollers (MCUs) that can reduce energy consumption by up to 50% compared to previous product generations. This enables less frequent battery replacements, minimises the impact of discarded batteries, and allows more designs to go battery free running solely from an energy-harvesting system such as a small photovoltaic cell.

In the global pursuit of sustainability, technologies deployed in smart buildings and Internet of Things (IoT) applications are critical tools for managing energy and resources efficiently. At the heart of the smart sensors and actuators making them possible, ST’s microcontrollers manage the processes that collect, filter, analyse, and act, communicating with high-level applications in the cloud. There are billions of these MCUs in action already and the expansion of smart living and working will demand billions more.

“It’s vital that these pervasive devices consume as little energy as possible as they help to minimise waste elsewhere. The new STM32U0 microcontroller series we are introducing today takes this notion to a new level, building on our proven ultra-low-power technologies,” explained Patrick Aidoune, General Purpose MCU Division General Manager, STMicroelectronics. “In fact, our new MCUs consume so little power that small devices in some dedicated applications like industrial sensor management can run for twice as long from the same size battery. This comes with the opportunity to add more advanced features and deliver cost-effective solutions for a variety of industrial, medical and consumer devices.”

The new STM32U0 MCUs enable this great leap in energy efficiency through a combination of their state-of-the-art design techniques and advanced manufacturing process. These include extremely low static power consumption in standby mode and superior wake-up performance, enabling the MCU to spend more time in power-saving sleep modes to minimise average energy demand.

One lead customer, in the security-systems market, is using the STM32U0 in security cameras to wake the device when motion is detected and thus enhance surveillance while saving energy. Another has created ultra-long-lasting smoke detectors, while a further application, by Ascoel, is using the STM32U0 to manage power-conscious functions of a water meter.

The STM32U0 enhances cost-effectiveness by providing an LCD segment display controller. Devices with an LCD, like Ascoel’s water meter as well as thermostats, smart retail labels, access-control panels, and factory automation can take advantage of this to reduce the cost of their PCB. Additional value-added features of STM32U0 MCUs include numerous analog peripherals like analog-to-digital converters (ADC), digital-to-analog converters (DAC), operational amplifiers, and comparators. There is also an on-chip system oscillator that helps cut the bill of materials to save costs and PCB space.

STM32U0 devices are the first MCUs running on Arm Cortex-M0+ targeting SESIP Level 3 and PSA level 1 focusing on firmware code protection. Certification provides an independent assurance of the STM32U0 security capabilities that product manufacturers can leverage to comply with the coming voluntary US Cyber Trust Mark and mandatory EU Radio Equipment Directive (RED).

Developers can also take advantage of up to 256KB of Flash, package options up to 81 pins, and 56MHz core speed, which are generous specifications for this class of device.

https://www.st.com

> Read More

Integrated LQ050XX load switch ICs from Littelfuse now at Rutronik

Equipped with state-of-the-art technology, Littelfuse’s LQ050XX integrated load switch ICs offer the industry’s highest performance with ultra-low power consumption. They make it possible to reduce parasitic leakage currents, improve system efficiency, and extend battery life. That means a real upgrade for a wide range of applications, e.g. in wearables, smart homes, or IoT devices.

The integrated load switch ICs are available in different housing sizes from 0.77 mm x 0.77 mm x 0.46 mm to 0.97 mm x 1.47 mm x 0.55 mm. Their small size makes them particularly suitable for applications with limited space. The switches are robust, particularly power-saving and, thanks to the cutting-edge technology they contain, can deliver market-leading performance in terms of low quiescent current and switch-off current. In addition, they impress with low power losses and reduced leakage currents for extremely convincing efficiency.

The ICs are available in the following versions:
LQ05021QCS4:
The load switch delivers 2 A rated power. The integrated slew rate control improves system reliability and reduces voltage fluctuations on the bus. Together with its outstanding efficiency, this makes it the ideal solution for applications such as IoT or wearables.
LQ05021RCS4:
The IC has a high efficiency and the leading True Reverse Current Blocking (TRCB) technology. Together with a particularly low threshold voltage, the LQ05021RCS4 prevents reverse current when Vout exceeds Vin, minimises power loss during operation, and offers an extremely low switch-off current. The switch is predestined for wearables, portable electrical devices, or IoT applications.
LQ05022QCS4:
This switch is also equipped with slew rate control, which limits the inrush current and thus minimises the voltage drop. The LQ05022QCS4 supports a wide input voltage range, which optimises both the service life and the reliability of a system. The component can also be used in different voltage rails. Preferred applications include data storage, IoT devices, or low-power subsystems.
LQ05041QCS6
The LQ05041QCS6 has a rated power of 4 A. It has an integrated slew rate control and also a slew rate control. With six bumps and a size of 0.97 mm x 1.47 mm x 0.55 mm, it is particularly small and is primarily used in data storage, or the medical sector.
LQ05041RCS6
With its leading TRCB technology and extremely low threshold voltage, the switch prevents reverse currents and minimises power loss during operation. Its main areas of application include portable devices and power-saving subsystems.

https://www.rutronik24.de/

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration