Farnell now stocks Murata’s UWB and LoRa modules

Farnell is now offering Murata’s latest UWB and LoRa connectivity modules for convenient wireless integration. These modules are designed to simplify wireless development and certification, making it easier to incorporate wireless capabilities into a wide range of applications.

Murata’s UWB modules provide high-accuracy location functionality with UWB tag and anchor functions in compact packages. These modules feature integrated RF front ends, simplifying the implementation process and reducing the need for extensive RF expertise. This allows developers to seamlessly incorporate advanced location capabilities into their applications..

Additionally, Murata’s LoRa modules offer a compact, integrated solution with an embedded MCU. Developers have the flexibility to utilise the MCU as the Host for an End Node, providing customisation possibilities for various projects.

The technology enables location accuracy in the order of 0.1m for indoor or outdoor applications. The UWB Modules available at Farnell include:

• FiRa certified UWB module, Type 2BP is the ultra small UWB module which includes NXP’s SR150 UWB chipset, clock, filters and peripheral components. Ideally suited for general IoT devices including battery operated devices.
• UWB module with integrated BLE wireless MCU, Type 2AB is designed as ultra-small, high quality and lower power consumption module. It can be operated on the wireless MCU making this a suitable part for wearables and applications where size is critical
• UWB tag module with integrated BLE wireless MCU. Type 2DK is an all-in-one UWB + Bluetooth LE combo module which integrates NXP Trimension SR040 UWB Chipset, NXP QN9090 Bluetooth LE + MCU chipset, on board antenna and peripheral components. Ideally suited for UWB Tag/Tracker which operates by coin-cell battery, and general IoT devices.

The Murata Type 1SJ LoRa Modules are some of the smallest LoRa Modules in the line-up and include the Semtech SX1262 LoRa Connect Transceiver IC and ST Microelectronics STM32L0 MCU to provide customers with a Regulatory Certified Module that can be used as the core of a LoRa End Node product design. The LoRa modules available at Farnell include:

• LoRa OpenMCU Module, Type 1SJ-295 supplied as an OpenMCU configuration to allow custom Application to be flashed to integrated MCU, together with LoRa Stack.
• LoRaWAN Modem Module, Type 1SJ-6868 pre-flashed with modem Firmware and EUI to support LoRaWAN operation by AT Commands.
• LoRa Module Evaluation Kit to support development and verification for both OpenMCU and Modem configurations of Module.

https://uk.farnell.com

> Read More

ST BrightSense image sensor ecosystem for advanced camera performance

ST has introduced a set of plug-and-play hardware kits, evaluation camera modules and software that ease development with its ST BrightSense global-shutter image sensors. The ecosystem lets developers of mass-market industrial and consumer applications ensure superior camera performance by designing-in ST BrightSense image sensors. By sampling all pixels simultaneously, unlike a conventional rolling shutter, global-shutter sensors can capture images of fast-moving objects without distortion and significantly reduce power when coupled to a lighting system.

ST BrightSense CMOS global-shutter sensors implement advanced backside-illuminated pixel technology. Their high sensitivity enhances low-light performance and permits fast image capture, enhancing responses such as obstacle avoidance in mobile robots and face recognition in personal electronics. The sensors’ advanced 3D-stacked construction allows an extremely small die area, easing integration anywhere space is limited especially in the final optical module, while enriching the products with advanced on-chip image processing for auto-exposure, correction, and calibration. Their MIPI-CSI-2 interface makes them ideal for embedded vision and edge AI devices.

ST’s cutting-edge sensor technologies are now available in a wide variety of markets through the ST BrightSense portfolio, highlighting industrial-grade products and 10-year longevity commitment. Widespread access to these sensors now lets developers bring high-performance machine vision to applications that face strict size and power constraints and challenging operating conditions. These include factory automation, scanning, domestic and industrial robots, VR/AR equipment, traffic monitoring, and medical devices.

ST’s new mass-market offering includes evaluation camera modules that integrate image sensor, lens holder, lens, and plug-and-play flex connector to enable instant integration of the image sensors. The modules offer a selection of tiny form factors down to 5mm2, various lens options to suit different application requirements, and a plug-and-play connector that allows easy swapping. A series of hardware kits helps developers integrate the sensors with various desktop and embedded computing platforms. Complementary software tools are available for free download on ST’s website, such as a PC-based GUI and Linux drivers that assist integration with popular processing platforms including STM32MP2 microprocessors.

The ST BrightSense global-shutter family currently comprises the VD55G0, VD55G1, and VD56G3 monochrome sensors with resolution from 0.38Mpixel to 1.5Mpixel, as well as the color VD66GY with 1.5Mpixel. The sensors, along with their evaluation camera modules, and development boards are in production now.

https://www.st.com/brightsense

> Read More

Molex examines convergence of ruggedisation and miniaturisation in new report

Molex has released a report that explores the ever-increasing role of ruggedised, miniaturised interconnect solutions in unlocking new possibilities for electronic device innovation across a growing swath of industries. The report, entitled “Breaking Boundaries: Uniting Ruggedisation and Miniaturisation in Connector Design,” looks at the trends, tradeoffs and enabling technologies that remove roadblocks while helping shape the future of electronics.

“Increasing demand for electronics in new vehicle platforms has intensified the need for smaller and rugged interconnects designed to withstand the harshest environments,” said Carrieanne Piccard, VP and GM, Transportation Innovative Solutions, Molex. “As a result, the ruggedisation of miniaturised connectors has emerged as an overarching design principle, requiring a holistic approach across the entire lifecycle of components to achieve optimal product reliability, performance and longevity.”

In this industry report, Molex defines miniature connectors as having a pitch of 2.54mm or less while ruggedness refers to features for withstanding the harshest environments and mechanical stresses. The convergence of interconnect ruggedisation and miniaturisation has enabled major innovations in the automotive industry, especially in supporting electric vehicles (EVs) and zonal architectures. Now the trend is permeating other industries, including consumer electronics (e.g., fitness trackers, smartwatches and smart home devices); industrial automation (e.g., industrial robots, touchscreens and sensors); as well as medical devices (e.g., endoscopes, insulin pumps and wearable health monitors).

Growing adoption of compact, durable connectors is gaining traction in other application areas, such as smart agriculture. Vertical farming systems with dense sensor and lighting installations require space-efficient connectors that work in wet, humid environments without interruption. Smaller, lighter and rugged connectors found in agricultural drones or “flying tractors” also must be protected against extreme temperature and excessive vibration, along with exposure to moisture, dust and corrosive chemicals.

Molex’s new report explores best practices for clearing major design and manufacturing roadblocks to facilitate the design of increasingly smaller, lighter and more reliable connectors. Aluminium alloys and specialised, high-strength steel, as well as high-performance polymers, offer exceptional durability and lightweight construction. Processing these materials into complex connector geometries, however, often calls for specialised techniques, ranging from micro-molding and high-precision machining to laser welding or selective plating.

In addition, dense pitch layouts enable higher-contact density to accommodate smaller device footprints, but they require high-precision manufacturing and assembly. Increased risk of crosstalk and ineffective heat dissipation also can occur. To mitigate these issues, engineers can rely on advanced signal routing techniques, shielding and isolation methods, along with advanced thermal management strategies like heat sinks or thermal vias. Molex DuraClik Connectors feature housings made from high-temperature PBT material and secure terminal retention to withstand extreme automotive environments.

Multi-Functional Terminals (MFTs) represent a significant leap forward in miniaturised connector technology by integrating multiple functionalities — power, signal and even mechanical features, like locking mechanisms, into a single compact connector. Molex’s new report also investigates top environmental factors that can compromise component reliability while offering strategies and solutions to ensure optimal connector performance in harsh conditions. Strain relief features and contact design help optimise connector performance despite constant exposure to the stresses of vibration, shock and repeated mating cycles.

At Molex’s Global Reliability Lab, engineers simulate real-world vibration, temperature cycling and exposure to harsh chemicals. Molex Micro-Lock Plus Connectors address vibration challenges with a positive locking mechanism to ensure secure mating while averting accidental uncoupling in high-vibration environments. The connector’s metal solder tabs provide added strain relief to solder joints for enhanced resistance to mechanical stress and vibration.

Since even a single drop of water or speck of dust can create corrosion, shorts, and ultimately, device failure, ingress protection is essential. Molex’s Squba Connectors feature IP68-rated seals certified as resistant to nearly five feet of water for 30 minutes. These compact connectors optimise power delivery in one of the smallest, most durable form factors available.

As devices continue to shrink in size yet grow in functionality, Molex engineers are pushing the design boundaries of miniaturisation and ruggedisation to solve real-world business problems and exceed customer expectations.

 

http://www.molex.com.

> Read More

Infineon extends its AIROC Wi-Fi 6/6E portfolio

Infineon has announced the company’s new AIROC CYW5591x connected microcontroller (MCU) product family. The new family integrates robust, long-range Wi-Fi 6/6E and Bluetooth Low Energy 5.4 along with a secured and versatile MCU to allow customers to build cost-optimised, power-efficient, small form-factor products for smart home, industrial, wearables, and other IoT applications. The flexible platform accelerates customers’ time-to-market with ModusToolbox software, RTOS and Linux host drivers, a fully validated Bluetooth stack and multiple sample code examples, Matter software enablement, and support for Infineon’s worldwide partner network.

This flexible device family can be used as the main processor in an IoT device or as a subsystem in more complex designs to fully offload connectivity for IoT applications. The product family is available in three versions: CYW55913 for tri-band (2.4/5/6 GHz), CYW55912 for dual-band (2.4/5 GHz), and CYW55911 for single-band (2.4GHz) support.
Key features
• An Arm Cortex M33 192MHz MCU with TrustZone CC312 with 768 KB SRAM
• Quad-SPI with XIP with on-the-fly encryption/decryption for FLASH and PSRAM
• 1×1 Tri-Band (2.4/5/6 GHz) 20MHz Wi-Fi 6/6E (802.11ax)
• Up to +24 dBm transmit power for Wi-Fi for best-in-class range
• Supports 6 GHz (Wi-Fi 6E) greenfield spectrum for lower congestion and reduced latency
• Matter-over-Wi-Fi support
• Bluetooth Low Energy 5.4 supports Bluetooth low energy 2 Mbps, LE Long Range, Advertising Extensions, and Advertising code selection for LE Long Range
• Bluetooth Low Energy range and power are also optizized with up to +19 dBm transmit power
• Best-in-class LE Longe Range sensitivity of -111.5 dBm
• Extensive peripherals and GPIO support: 3xSCB(I2C/SPI/UART), TCPWM, 7 channel 12-bit ADC, Digital Microphone support, TCM (I2S/PCM), and up to 47 GPIOs
• Hardware support for AES, RSA, ECC, ECDHA, ECDSA, Root-of-Trust
• Multi-layer security supporting lifecycle management, secured boot with firmware authentication and encryption, anti-rollback, crypto key establishment, and management
• PSA Level 2 Certifiable

https://infineon.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration