Microchip expands TrustFLEX family with CEC1736 Real-time Platform Root of Trust Devices

As technology and cybersecurity standards continue to evolve, Microchip is helping make embedded security solutions more accessible with its CEC1736 TrustFLEX devices. The CEC1736 Trust Shield family is a microcontroller-based platform root of trust solution enabling cyber resiliency for data centres, telecom, networking, embedded computing and industrial applications. Now, as part of the TrustFLEX platform, the devices are partially configured and provisioned with Microchip-signed Soteria-G3 firmware to reduce the development time needed to integrate platform root of trust. These devices also help fast-track the provisioning of required cryptographic assets and signed firmware images, simplifying the process of secure manufacturing as required by the National Institute of Standards and Technology (NIST) and Open Compute Project (OCP) standards.

Specifically designed to meet NIST 800-193 platform resiliency guidelines, as well as OCP requirements, CEC1736 TrustFLEX devices can support security features necessary to enable hardware root of trust across various markets. The Trust Platform Design Suite tool will allow customers to personalize platform-specific configuration settings, including unique credentials, to support any application, host processor or SoC that boots out of an external SPI Flash device to extend the root of trust in the system.
Modern firmware security features enabled on the CEC1736 TrustFLEX—like SPI bus monitoring, secure boot, component attestation and lifecycle management—can keep both the pre-boot and real-time (time of check and time of use) environments shielded from both in-person and remote threats.
The highly configurable, mixed-signal, advanced I/O CEC1736 controllers integrate a 32-bit 96 MHz Arm® Cortex®-M4 processor core with closely coupled memory to offer optimal code execution and data access.
The CEC1736 TrustFLEX Configurator, part of the Trust Platform Design Suite, provides a visual view of different use cases to select, configure and generate a provisioning package for development, prototyping and production. The CEC1736 development board is equipped with a socket for easier evaluation and development.

https://www.microchip.com

> Read More

Infineon announces the industry’s first wide input voltage hot-swap controller for telecom infrastructure

Infineon is expanding its XDP digital power protection controller product family with the XDP700-002, the industry’s first -48 V wide input voltage digital hot-swap controller with a programmable safe operating area (SOA) control designed for telecom infrastructure.

It boasts superior current reporting accuracy of less than ±0.7 percent, enhancing the system’s fault detection and reporting accuracy. Furthermore, the product features boost-mode control technology for safer turn-on of field-effect transistors (FETs) in systems with non-optimal SOA. This new member of the XDP product family is tailored for a spectrum of telecom applications, including remote radio head power, base station power distribution, active and passive antenna systems, 5G small cell power, and telecom UPS systems.

The XDP700-002 employs a three-block architecture that combines high-precision telemetry for monitoring and fault detection, digital SOA control optimised for power MOSFETs, and integrated gate drivers for n-channel power MOSFETs. The XDP700-002 operates within an expansive -6.5 to -80 V input voltage range and can withstand transients up to -100 V for 500 ms, delivering current and voltage telemetry with a remarkable 0.7 percent and 0.5 percent accuracy respectively. It features precise PMBus compliant active monitoring for enhanced system reliability. A programmable gate shutdown during severe overcurrent (SOC) ensures robust shutdown operation within just 1 µs. The advanced closed-loop SOA control ensures higher MOSFET reliability, and the fully digital operating mode minimises the need for external components offering a compact solution making it an optimal fit for space-constrained designs in a cost-effective way.

With options for external FETs selection and a one-time programmable (OTP) option, the XDP700-002 offers flexibility for programming faults and warnings detection as well as de-glitch levels for various usage models. Its analog-assisted digital mode offers backward compatibility with legacy analog hotswap controllers. By offering robust functionality and adaptability, the XDP700-002 exemplifies Infineon’s continuous commitment to innovation and system reliability in telecom infrastructure.

https://www.infineon.com/xdp700-002.

> Read More

New Renesas MCUs with high-resolution analog and Over-the-Air update support

Renesas has introduced the RA2A2 microcontroller (MCU) Group based on the Arm Cortex-M23 processor. The new, low-power devices offer a 24-bit Sigma-Delta analog-to-digital converter (SDADC), and an innovative dual-bank code flash and bank swap function that make it easy to implement firmware over-the-air (FOTA) updates for smart energy management, building automation, medical devices, consumer electronics and other IoT applications that can benefit from firmware updates.

The RA2A2 devices offer multiple power structures and voltage detection hardware to realize energy-efficient, ultra-low power operation as low as 100 µA/MHz in active mode and 0.40µA in software standby mode. An independent power supply real-time clock extends battery life for applications requiring long lifetime management in extreme conditions. The new MCUs also offer AES hardware acceleration, a high-precision (±1.0%), high-speed on-chip oscillator, a temperature sensor, and a wide operating voltage range from 1.6V to 5.5V.

RA2A2 MCUs contribute to the digitalization of conventional systems with key features including high-level analog sensing, FOTA support, 8KHz/4KHz hybrid sampling, and AES hardware accelerator functions. When the end-systems are digitalized, it is possible to analyse individual systems status seamlessly for further energy-efficient, streamlining system operation. For example, next generation smart electricity meters with Non-Intrusive Load Management (NILM) technology enable energy consumption monitoring based on detailed analysis of the current and voltage of the total load. The adoption of smart meters with NILM is the most cost-effective and scalable solution for increasing energy efficiency and lowering energy consumption.

The new RA2A2 Group MCUs are supported by Renesas’ Flexible Software Package (FSP). The FSP enables faster application development by providing all the infrastructure software needed, including multiple RTOS, BSP, peripheral drivers, middleware, connectivity, networking, and security stacks as well as reference software to build complex AI, motor control and cloud solutions. It allows customers to integrate their own legacy code and choice of RTOS with FSP, thus providing full flexibility in application development. Using the FSP will ease migration of RA2A2 designs to larger RA devices if customers wish to do so.

https://www.renesas.com/RA2A2

> Read More

u-blox launches new GNSS platform for enhanced positioning accuracy in urban environments

u-blox, has announced F10, the company’s first dual-band GNSS (Global Navigation Satellite Systems) platform combining L1 and L5 bands to offer enhanced multipath resistance and meter-level positioning accuracy. The platform caters to urban mobility applications, such as aftermarket telematics and micromobility.

Applications that use GNSS receivers for accurate positioning are on the rise. Yet, current receivers do not fully perform in urban areas. Accurate and reliable positioning in dense urban environments, where buildings or tree foliage can reflect satellite signals, requires GNSS receivers to mitigate multipath effects. The L5 band’s resilience to these effects significantly improves positioning accuracy. Combined with the well-established L1 band, an L1/L5 dual-band GNSS receiver can deliver < 2 m positioning accuracy (CEP50), against about 4 m with the L1 band only. The u-blox team has conducted driving tests in several urban areas, confirming a significant improvement over GNSS L1 receivers.

The F10’s firmware algorithm prioritises L5 band signals in weak signal environments, ensuring reliable positioning accuracy even when paired with small antennas. The platform is also equipped with protection-level technology that provides a real-time trustworthy positioning accuracy estimate.

When a cellular modem is extremely close to a GNSS receiver, it can interfere with the receiver’s reception. Some F10 module models (NEO-F10N, MAX-F10S, and MIA-F10Q) are equipped with a robust RF circuit that allows the GNSS and the cellular modem to operate without interference.

The u-blox F10 platform is pin-to-pin compatible with the previous u-blox M10 generation for easy migration. It also supports u-blox AssistNow, which offers real-time online A-GNSS service with global availability to reduce GNSS time-to-first-fix and power consumption.

https://www.u-blox.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration