Optical front end IC gives a LiFi boost to any mobile device

At MWC21, LiFi specialist, Oledcomm, unveiled Gigabit OFE, an ASIC that turns any mobile device into a Li-Fi-powered device, says the company.

Li-Fi (light fidelity) allows devices to be connected to each other using light. Li-Fi transmits data by modulating light signals from a light source, the light signals are received and converted into data using a dongle connected to the device.

The 1.5 x 2.5mm ASIC can be seamlessly integrated into smartphones, laptops and tablets, says the company, eliminating the need for the dongle. It can be coupled with photodiodes and light source like LED or VCSEL to achieve a 1Gbit per second point to point connection at a distance of one to five metres. The OFE can be used with a G.99991 baseband as well as a 802.11 baseband which is already present in most of today’s mobile devices.

Benjamin Azoulay, president of Oledcomm, said the Gigabit OFE will radically change the end user experience. Dongles will no longer be required as the Li-Fi is natively integrated into devices, bringing a “light-based, fast, secure and healthy wireless connectivity anywhere WiFi/4G/5G radio waves are not suitable”.

Oledcomm is based in Paris, France and specialises in data exchange solutions using light (Li-Fi). It designs complete solutions for Li-Fi operation, including microcontrollers (modems), Li-Fi photoreceivers (dongles and bridges) and software platforms (Li-FiCloud and software development kits).

The potential market for Li-Fi is huge, says the company: with 14 billion points of light worldwide which could become a powerful, safe and radio-free communication network.

Oledcomm holds more than 28 patents (supported by France Brevets) and has partnered with Ariane Group, Thales Alenia Space, OneWeb, French space agency CNES and Ford.

In January 2018, Oledcomm launched MyLiFi, the first luminaire accessible to the general public, the following year, it launched the LiFiMAX website, the first internet access point through invisible light.

In October 2019, an Air France A321 plane equipped with Oledcomm Li-Fi modems flew from Paris to Toulouse.

Oledcomm is certified ISO9001 and ISO14001.

http://www.oledcomm.net

> Read More

RTG4 Sub-QML is claimed to be first rad-tolerant FPGA in a plastic package

Microchip’s RTG4 Sub-QML FPGA has been qualified to JEDEC standards in a flip-chip 1657 ball grid array plastic package, with 1.0mm ball pitch. The low-power RTG4 FPGA offers new space system designers the industry’s highest reliability at lowest cost with shortest lead times, says Microchip Technology.

The radiation tolerant (RT) FPGA offers developers of small-satellite constellations and other systems used in new space missions the low cost of a JEDEC-qualified plastic package with the reliability of RTG4 FPGA technology and decades of spaceflight heritage, eliminating full Qualified Manufacturers List (QML) procedures.

“This is a major milestone for system designers who need large volumes of space-grade components at low unit cost, and reduced lead times so they can keep pace with shorter service launch cycles,” said Ken O’Neill, associate director, space and aviation marketing for Microchip’s FPGA business unit.

The RTG4 Sub-QML FPGA is pin-compatible with the company’s QML Class V-qualified RTG4 FPGAs in ceramic packages, making it easy for developers to migrate their designs between new space and more rigorous Class-1 missions. The RTG4 Sub-QML FPGAs in plastic packages are also available as prototypes in small quantities, allowing designers to evaluate the product and prototype their systems before committing to large volumes of flight models.

Other Microchip products available in plastic packages for spaceflight systems include its LX7730 telemetry controllers, LX7720 position sensing and motor controllers, and high-reliability plastic versions of its microcontrollers, microprocessors, Ethernet PHYs, ADCs, EEPROM and flash and memory.

The JEDEC-qualified RTG4 Sub-QML FPGA in the 1657 ball plastic BGA package is available in production volumes.

Microchip Technology offers development tools and a comprehensive product portfolio and serves more than 120,000 customers across the industrial, automotive, consumer, aerospace and defence, communications and computing markets.

http://www.microchip.com

> Read More

Payment bracelets interpret gestures and use biometric data

Collaboration between Italian start-up, DEED and Infineon Technologies, is showcased at MWC21. The get bracelets interpret human gestures and use biometic data to pick up a call or make payments.

At the core of get is a system consisting of components from Infineon that enable the wearable with connectivity, computing, sensing and security capabilities. Infineon’s Secora Connect supports the payment functionality based on lowest power consumption to achieve longest battery life for the consumer. Infineon’s Xensiv MEMS technology provides high-fidelity voice recording during phone call. The PSoC 6 microcontroller family which uses a high performance dual-core M4/M0 architecture is paired with Infineon’s Airoc Wi-Fi and Bluetooth for secure, low power  connectivity.

According to Edoardo Parini, CEO and founder of DEED, the bracelet’s pioneering features include new and higher security standards, an ID acquisition method for contactless payment and there is no screen. “It is the perfect bridge between ‘you‘ and ‘your’ digital-self!” said Parini.

Patented techniques have been used to create a seamless, light and water resistant wearable wristband, made up of several layers, based around a rigid-flex PCB. The intuitive human machine interface (HMI) allows for natural operation because the wearer does not have to swipe on screens or touch any display. Motion sensors with artificial intelligence (AI), for gesture recognition allow it to interpret human gestures, for example, to pick up a call, to check the time or to make payments. Consumers can use it to listen to audio or answer calls by holding their finger to their ear by ‘wrist bone conduction’, sending the sound through the body to the inner ear. Contactless payments can be released after individual electrocardiogram-based biometric identification. The bracelet also allows fitness and health monitoring.

http://www.infineon.com

> Read More

Humidity sensors can extend industrial and automotive system lifetimes, says TI

The first devices in a family of humidity sensors from Texas Instruments are claimed to provide the industry’s highest reliability and accuracy and the lowest power consumption. The HDC3020 and HDC3020-Q1 have built-in protection for sensing elements to create more reliable industrial and automotive systems that withstand potential damage caused by moisture, reacting as needed to changing water vapour conditions over time.

From extending the life of produce during transport and storage, to keeping automotive cameras clear of fog, to controlling air quality and flow in buildings, the need for improved reliability and safer, more comfortable environments has increased the adoption of relative humidity (RH) sensors.

The HDC3020 and HDC3020-Q1 offer improved relative humidity measurement accuracy with reduced long-term error, when compared to existing RH sensors, says TI. They preserve data integrity under stress conditions and are claimed to be the industry’s first to provide integrated correction to adapt to drift caused by natural aging, environmental stress or interactions with contaminants.

The humidity sensors achieve lower drift in extreme conditions than competing devices, with less than 0.21 per cent RH accuracy drift per year and less than five per cent RH drift from temperature and humidity stress (tested up to 85 per cent RH and 85 degrees C). This sustained accuracy enables longer system lifetimes, eliminating the need to frequently replace or recalibrate the sensor.

When exposed to stress or contaminants, the sensors also provide a second line of defence, where even a small accuracy drift from the sensor’s time-zero specification can be removed using integrated drift correction technology.

The HDC3020 and HDC3020-Q1 are verified with a procedure traceable to the National Institute of Standards and Technology for the full supply voltage of 1.62 to 5.5V and the widest temperature and humidity range at ±1.5 per cent RH. This level of accuracy enables more precise control of a system, increasing efficiency by ensuring that the system only runs when necessary.

The sensors are available in several pin-to-pin compatible package cover options, such as removable polyimide tape and permanent IP67-rated filter covers. The covers provide ingress protection against dust and moisture for the devices during assembly and system lifetimes, and help maintain accuracy when the sensor is exposed to contaminants.

Low power consumption (nA) across the supply range from 1.62 to 5.5V enables low power operation while a system is actively running and when in sleep mode. An automatic measurement mode enables humidity sensing at regular intervals to capture data while the rest of the system sleeps to preserve system battery life in applications such as cold chain data loggers, wirelessly connected environmental sensors such as air-quality monitors, smart home or wireless sensor nodes in buildings or IP network cameras.

Preproduction versions of the HDC3020 and HDC3020-Q1 in eight-pin leadless plastic small outline packages are available exclusively from the TI website.  Additional devices with analogue output and packages with protective covers are expected to be available by the end of the year.

http://www.ti.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration