Charger IC is wireless power transfer-compatible

A multi-functional, compact charging IC for lithium-ion (Li-ion) batteries, the XC6810, supports wireless power transfer.

Available from Torex Semiconductor, the XC6810 series of charging ICs for Li-ion batteries are suitable for wearables, hearables or IoT devices. Functions include charge and discharge control as well as wireless power supply support. 

Charging current is 1.0 to approximately 25mA, making it suitable for small Li-ion batteries. The ICs can provide a wide charging range of 3.8 to 4.4V.The XC6810 series are equipped with shutdown function to suppress battery discharge when stored or not in use as well as a wake-up function, activated using an external push button, to extend the life of batteries and devices. 

In addition to the conventional LED-driven display, a terminal indicates the charging status, showing charging level by frequency. It also supports charging monitoring using a microcontroller. 

The XC6810 is equipped with a battery voltage monitoring function, which can directly monitor the battery voltage through a microcontroller, or a low battery voltage notification function. 

The wide input voltage range of 3.5 to 28V supports wireless power and energy harvester charging, confirmed Torex. For contact-type charging using a cradle, for example, one version has a terminal which modulates the power supply line for the charging status to be notified by two-wire communication. The charging status and charging control can be displayed through the cradle. 

Torex Semiconductor provides CMOS power management ICs for battery powered and energy efficient applications. The company specialises in CMOS analogue technology, with LDO voltage regulators, voltage detectors and DC/DC converters in its product portfolio.

http://www.torexsemi.com

> Read More

Fast charging ICs offer highest charging efficiencies, says Halo Microelectronics 

Two fast charging ICs released by Halo Microelectronics use a dual-phase switched capacitor architecture for single cell battery applications.

The HL7138 and HL7139, fast charging ICs are claimed to offer the industry’s highest charging efficiencies, which enable faster and cooler battery charging operations in a PCB solution size that is up to 30 per cent smaller than the nearest competitor. The small form factor allows for more system level design flexibility, added Halo Microelectronics.

In addition to saving consumers time by fast charging, the ICs deliver cooler charging which means less energy is wasted, making the charging process environmentally friendly. The small size also provides designers more leeway to choose between thinner and lighter form factors or larger batteries for longer battery life, and whether to include more features or lower bill of material (BoM) costs.

Fast charging is one of the features which can differentiate a smartphone design in a saturated market. It is also one that consumers can relate to and understand the benefits, commented David Nam, CEO of Halo Microelectronics. “Halo Microelectronics has seen switched capacitor-based fast-charging architectures quickly extend from high-end to mid-level smartphones,” he said.

Halo Microelectronics develops analogue and power management ICs (PMICs) enabling energy-efficient smart systems. Its customers develop mobile, IoT and automotive systems.

https://halomicro.com

> Read More

Nowi unveil energy harvesting PMIC with a cold start feature

Dutch semiconductor company, Nowi, extends its energy harvesting and power management portfolio with the Diatom chipset. The 4.0 x 4.0mm Diatom (NH16D3045) is an energy harvesting PMIC, which has a wide power input range from micro W to mW and a fast MPPT (maximum power point tracking) for efficient energy harvesting.

It is designed to extract the power output of a wide range of energy harvesters to charge a variety of energy storage elements such as rechargeable batteries or supercapacitors. 

The cold start feature enables batteryless applications, which helps companies reduce maintenance costs, as well as a more sustainable and easier to use option, the company said.

Diatom caters to the need for increased integration in order to lower implementation cost, size and complexity whilst improving performance, added Nowi. It combines integrated energy harvesting and power management into a single product and has regulated output, over-voltage protection and USB charging. 

Diatom enables power autonomy in a variety of low power applications, from the smart home to industry 4.0 and retail applications. It can be used in IoT devices, electronic shelf labels (ESLs), to smart wearables such as smart bands, glasses, and consumer electronics like remote controls, tags. 

According to Nowi, Diatom perpetually powers devices with clean ambient energy, simplifies the design process and lowers the threshold to develop energy autonomous products. 

Simon van der Jagt, CEO at Nowi, said that the inductorless design and integrated power management functionalities will contribute to reduced implementation cost and area  required, and make new designs possible.

Semiconductor company, Nowi was founded in 2016, based in Delft, the Netherlands. It ha regional offices in the US and in Shanghai. 

Nowi has developed energy harvesting power management ICs (PMICs) that combine harvesting performance with small assembly footprint and low bill of materials (BoM) cost. 

http://www.nowi-energy.com 

> Read More

MEMS timing accelerates wireless charging says SiTime

For power-sensitive and space-constrained mobile and IoT applications, the SiT3901 uPower digitally controlled MEMS oscillator (DCXO) has been introduced by SiTime. It improves wireless charging speed by up to 25 per cent while reducing the overall timing solution area by up to 90 per cent, says the company. The MEMS oscillator is suitable for wireless charging systems for smart watches, activity trackers, hearing aids, and wearables.

“The power and size requirements of new wireless applications demand a new approach to timing,” says Piyush Sevalia, executive vice president of marketing at SiTime. “The SiT3901 DCXO is the industry’s first µPower digitally controlled oscillator, and it delivers by improving charging efficiency and reducing the area,” he adds.

Wireless charging standards such as Qi and AirFuel rely on resonant power transfer to enable proximity charging. However, environmental interference may dynamically impact the resonant charging frequency, which slows down the charging process. The SiT3901 enables the charger to dynamically tune the resonant frequency, maximising power transfer and delivering up to 25 per cent faster charging. The digital control feature on the SiT3901 DCXO eliminates the need for additional passive components on the board, reducing the timing solution area by up to 90 per cent. The resulting charging system works better and is smaller, more manufacturable, and more reliable, claims SiTime.

The SiT3901 DCXO extends SiTime’s µPower MEMS oscillator family targeting power and space-constrained wearable, hearable, IoT, and mobile applications. The µPower MEMS oscillators consume up to 90 per cent less power and up to 90 per cent less space compared to quartz oscillators, enabling environmentally friendly electronics. The SiT3901 offers high resilience to analogue noise and includes low 105 microA current consumption (typical), a wide digital pull range (up to 15 per cent) for output frequency and a programmable frequency of 1.0 to 26MHz. They are stable over temperature of ±50 and ±100 ppm and have a wide operating temperature range of -40 to +85 degrees C.

The oscillators are supplied in a small 1.5 x 0.8mm package size.

http://www.sitime.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration