SoM by Variscite brings machine learning to compact, cost-optimised, rugged edge devices

Variscite has announced the newest member of the DART Pin2Pin family for machine learning on edge devices for markets like industrial, IoT, smart devices, and wearables.

At only 55 x 30 millimetres—about half the size of a credit card—the DART-MX93 enables machine learning, even in compact devices. Its energy-flex architecture provides efficient processing; built-in security ensures data and applications are protected.

Similar to the VAR-SOM-MX93 which was already launched by Variscite in 2023, the DART-MX93 is based on the same NXP iMX93 processor with up to 1.7GHz Dual Cortex-A55, and 250MHz Cortex-M33 real-time co-processor, equipped with the Arm neural processing unit Ethos-U65 microNPU. The new SoM includes robust features like 2x CAN bus, 2x GbE, and industrial temperature grade plus a wide range of features and connectivity options: camera inputs, audio in/out, ADC, 2x USB, certified Wi-Fi 6 dual-band 802.11 ax/ac/a/b/g/n with optional 802.15.4, BT/BLE 5.3, and LVDS display outputs.

Variscite offers a broad range of SoMs based on NXP’s i.MX 9 series. The upcoming VAR-SOM-MX91, to be released in parallel with NXP’s iMX91, is ideal for price-sensitive devices. The DART-MX95, powered by NXP i.MX95, was created for powerful edge platforms that demand high performance, high-end graphics, AI/ML capabilities, advanced security and safety functions, and a rich set of high-speed connectivity options.

The DART-MX93 is part of the DART Pin2Pin family that gives Variscite customers a future-proof way to scale their device capabilities with new generations of DART SoMs. This ensures extended longevity for customer products, as well as reduces development time, costs, and risks for future product iterations. From the i.MX8M Mini, through the i.MX8M and iMX8M Plus, to the i.MX 95.

https://www.variscite.com

> Read More

ST reveals automotive-grade inertial modules

ST has introduced the ASM330LHBG1 automotive 3-axis accelerometer and 3-axis gyroscope module with a safety-software library that enables a cost-effective solution for functional-safety applications.

The ASM330LHBG1 is AEC-Q100 Grade-1 qualified for the ambient operating temperature range -40°C to 125°C, allowing use such as next to the engine compartment and in areas exposed to sunlight. The modules deliver high accuracy and reliability for systems such as vehicle navigation, body electronics, in driver support and highly automated driving systems. Typical uses include support for precise positioning in navigation systems, digitally stabilising cameras, lidars, and radars, and in active suspension, door modules, vehicle-to-everything (V2X) applications, adaptive lighting, and motion-activated functions.

Equipped with ST’s machine-learning core (MLC) and programmable finite state machine (FSM), the ASM330LHBG1 can run artificial intelligence (AI) algorithms in the sensor to provide smart functionality at very low power. This IMU is pin-to-pin compatible and shares the same configuration of registers as ST’s automotive IMUs with a lower operating temperature range, permitting a seamless upgrade.

In addition, the modules contain embedded temperature compensation, which ensures stability over wide-ranging operating conditions, and provide a six-channel synchronised output to enhance the accuracy of dead-reckoning algorithms. There are also I²C, MIPI I3C, and SPI serial interfaces, smart programmable interrupts, and a 3KB FIFO that eases managing sensor data to minimise load on the host processor.

The independently tested and certified software adheres to ISO26262 and enables safety-compliant redundancy with two ASM330LHBG1 modules. Fulfilling safety element out of context (SEooC), this combination based on general-purpose hardware supports system certification up to automotive safety integrity level B (ASIL B) . This library provides software for configuring the sensing module, checking for correct operation before starting to acquire data, and handling the acquisition of the data coming from the sensing module. Each of these steps is associated with an error code that provides confirmation if a fault is detected. This solution comprising two identical sensors provides redundancy, checking the data coming from two different sensing sources are consistent.

https://www.st.com/safer-driving-smarter-life

> Read More

Embedded security using Microchip’s PIC32CK 32-bit MCUs with hardware security module

New legislation takes effect in 2024, mandating stricter requirements on cybersecurity on everything from consumer IoT devices to critical infrastructure. Meeting these new security compliance requirements from a product and supply chain perspective can be complex, costly and time-consuming. To provide developers with an embedded security solution that allows them to design applications that comply with these requirements, Microchip has announced the new family of PIC32CK 32-bit microcontrollers (MCUs) with an integrated Hardware Security Module (HSM) subsystem and Arm Cortex-M33 core featuring TrustZone technology to help isolate and secure the device.

The PIC32CK SG is the first 32-bit device on the market that combines the strong security of an HSM with TrustZone technology, a hardware-based secure privilege environment. Microchip’s latest innovation for mid-range MCUs provides designers with a cost-effective embedded security solution for their products that meets the latest cybersecurity mandates. The inclusion of an HSM provides a high level of security for authentication, secure debug, secure boot and secure updates, while TrustZone technology provides an additional level of protection for key software functions. The HSM can accelerate a wide range of symmetric and asymmetric cryptography standards, true random number generation and secure key management.

The PIC32CK MCUs from Microchip are designed to support ISO 26262 functional safety and ISO/SAE 21434 cybersecurity standards. For increased flexibility and cost efficiency, the PIC32CK MCU family offers a wide range of options to tune the level of security, memory and connectivity bandwidth based on the end application’s requirements. Options include up to 2 MB dual-panel Flash and 512 KB SRAM, with various connectivity options like 10/100 Ethernet, CAN FD and USB.

For product supply chains that require additional security and safety protection such as in industrial designs, medical devices, home appliances and consumer IoT devices, the PIC32CK will be supported with Microchip’s Trust Platform Design Suite for provisioning as a service. This platform enables the secure factory provisioning of keys, certificates and IP without the need to reveal these secrets within the supply chain.

The 32-bit PIC32CK MCU family is supported by Microchip’s software platforms including MPLAB® Harmony v3 and Trust Platform Design Suite. The PIC32CK family is also supported by the PIC32CK SG and PIC32CK GC Curiosity Ultra Development Boards including the EV33A17A and EV44P93A.

https://www.microchip.com.

> Read More

maXTouch touchscreen controller family from Microchip expands with additional security

As we see an increased number of electric vehicles (EVs) on the road, the necessary charging infrastructure must expand to meet the increased demand. Adding credit card payment options to EV chargers is becoming a standard practice in many countries—and is a mandate in the European Union—and chargers need to meet Payment Card Industry (PCI) security standards. To help EV charger designers protect their payment architectures, Microchip has launched the MXT2952TD 2.0 family of secure touchscreen controllers.

Typical touch-enabled human machine interface (HMI) and radio frequency identification (RFID) combination-based payment systems are vulnerable to hacking attacks via malicious software updates or man-in-the-middle attacks when a user enters their personal identification number (PIN) on the touchscreen. Physical mesh barriers and sensors are often used around these integrated circuits (ICs) for protection from hacking. Constant reflashing of software and device resets are used to help safeguard software integrity. The MXT2952TD 2.0 family is designed to encrypt touch data and cryptographically authenticate software updates to minimise risk and meet PCI certification compliance standards. When the RFID reader IC and the touchscreen controller are on different printed circuit boards (PCBs), it is especially difficult and expensive to build physical barriers for hack protection. Embedded firmware on the MXT2952TD 2.0 provides a more easily implemented solution for EV charger manufacturers to remain compliant with security regulations and avoid the cost of adding a second, expensive touchscreen payment module to the charger.

The outdoor nature of EV charger HMIs demand they withstand harsh weather conditions, function accurately in the presence of moisture and are resistant to vandalism. MXT2952TD 2.0 touch controller-based touchscreens remain effective when designed with IK10 standard 6 mm-thick glass, anti-reflective, anti-glare and anti-fingerprint coatings and IR filter/UV filter layers. Microchip’s proprietary differential touch sensing delivers exceptional noise immunity for superior touch performance even when used with thick gloves.

“The maXTouch 2952TD 2.0 family provides EV charger designers with a cost-effective, secure design architecture for implementing credit card payments with PIN entry on their touchscreens,” said Patrick Johnson, senior corporate vice present overseeing Microchip’s human machine interface division. “Combined with the rugged, outdoor HMI touchscreen technology that Microchip’s maXTouch portfolio is known for, the new addition to the 2952TD family of touchscreen controllers offers our customers secure designs and the exceptional touch performance necessary for outdoor applications.”

In addition to EV chargers, the MXT2952TD 2.0 family is well-suited for most unattended outdoor payment terminals such as parking meters, bus ticketing meters and other types of point-of-sale (POS) systems. The 2952TD 2.0 is specifically optimised for 20” screen sizes and its sister part, the MXT1664TD, is available for 15.6” screen sizes.

Standard maXTouch family development tools are available including maXTouch Studio Integrated Development Environment (IDE) and maXTouch Analyser, a production end-of-line test/inspection tool.

Microchip also has a number of factory-trained global touch sensor module partners to help support custom touch sensor and/or touchscreen display designs.

https://www.microchip.com.

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration