Intel’s Integrated Photonics Solutions (IPS) Group has announced the industry’s most advanced and first-ever fully integrated optical compute interconnect (OCI) chiplet co-packaged with an Intel CPU and running live data. Intel’s OCI chiplet represents a leap forward in high-bandwidth interconnect by enabling co-packaged optical input/output (I/O) in emerging AI infrastructure for data centres and high performance computing (HPC) applications.
This first OCI chiplet is designed to support 64 channels of 32 gigabits per second (Gbps) data transmission in each direction on up to 100 meters of fibre optics and is expected to address AI infrastructure’s growing demands for higher bandwidth, lower power consumption and longer reach. It enables future scalability of CPU/GPU cluster connectivity and novel compute architectures, including coherent memory expansion and resource disaggregation.
AI-based applications are increasingly deployed globally, and recent developments in large language models (LLM) and generative AI are accelerating that trend. Larger and more efficient machine learning (ML) models will play a key role in addressing the emerging requirements of AI acceleration workloads. The need to scale future computing platforms for AI is driving exponential growth in I/O bandwidth and longer reach to support larger processing unit (CPU/GPU/IPU) clusters and architectures with more efficient resource utilisation, such as xPU disaggregation and memory pooling.
Electrical I/O supports high bandwidth density and low power, but only offers short reaches of about one meter or less. Pluggable optical transceiver modules used in data centres and early AI clusters can increase reach at cost and power levels that are not sustainable with the scaling requirements of AI workloads. A co-packaged xPU optical I/O solution can support higher bandwidths with improved power efficiency, low latency and longer reach – exactly what AI/ML infrastructure scaling requires.
The fully Integrated OCI chiplet leverages Intel’s silicon photonics technology and integrates a silicon photonics integrated circuit (PIC), which includes on-chip lasers and optical amplifiers, with an electrical IC. The OCI chiplet demonstrated at OFC was co-packaged with an Intel CPU but can also be integrated with next-generation CPUs, GPUs, IPUs and other system-on-chips (SoCs).
This first OCI implementation supports up to 4 terabits per second (Tbps) bidirectional data transfer, compatible with peripheral component interconnect express (PCIe) Gen5. The live optical link demonstration showcases a transmitter (Tx) and receiver (Rx) connection between two CPU platforms over a single-mode fibre (SMF) patch cord. The CPUs generated and measured the optical Bit Error Rate (BER), and the demo showcases the Tx optical spectrum with 8 wavelengths at 200 gigahertz (GHz) spacing on a single fibre, along with a 32 Gbps Tx eye diagram illustrating strong signal quality.
The current chiplet supports 64 channels of 32 Gbps data in each direction up to 100 meters (though practical applications may be limited to tens of meters due to time-of-flight latency), utilising eight fibre pairs, each carrying eight dense wavelength division multiplexing (DWDM) wavelengths. The co-packaged solution is also remarkably energy efficient, consuming only 5 pico-Joules (pJ) per bit compared to pluggable optical transceiver modules at about 15 pJ/bit. This level of hyper-efficiency is critical for data centres and high-performance computing environments and could help address AI’s unsustainable power requirements.
These PICs were packaged in pluggable transceiver modules, deployed in large data centre networks at major hyperscale cloud service providers for 100, 200, and 400 Gbps applications. Next generation, 200G/lane PICs to support emerging 800 Gbps and 1.6 Tbps applications are under development.
Intel is also implementing a new silicon photonics fab process node with state-of-the-art device performance, higher density, better coupling and vastly improved economics. Intel continues to make advancements in on-chip laser and semiconductor optical amplifier (SOA) performance, cost (greater than 40% die area reduction) and power (greater than 15% reduction).
ICs & Semiconductors
Infineon extends its AIROC Wi-Fi 6/6E portfolio
Infineon has announced the company’s new AIROC CYW5591x connected microcontroller (MCU) product family. The new family integrates robust, long-range Wi-Fi 6/6E and Bluetooth Low Energy 5.4 along with a secured and versatile MCU to allow customers to build cost-optimised, power-efficient, small form-factor products for smart home, industrial, wearables, and other IoT applications. The flexible platform accelerates customers’ time-to-market with ModusToolbox software, RTOS and Linux host drivers, a fully validated Bluetooth stack and multiple sample code examples, Matter software enablement, and support for Infineon’s worldwide partner network.
This flexible device family can be used as the main processor in an IoT device or as a subsystem in more complex designs to fully offload connectivity for IoT applications. The product family is available in three versions: CYW55913 for tri-band (2.4/5/6 GHz), CYW55912 for dual-band (2.4/5 GHz), and CYW55911 for single-band (2.4GHz) support.
Key features
• An Arm Cortex M33 192MHz MCU with TrustZone CC312 with 768 KB SRAM
• Quad-SPI with XIP with on-the-fly encryption/decryption for FLASH and PSRAM
• 1×1 Tri-Band (2.4/5/6 GHz) 20MHz Wi-Fi 6/6E (802.11ax)
• Up to +24 dBm transmit power for Wi-Fi for best-in-class range
• Supports 6 GHz (Wi-Fi 6E) greenfield spectrum for lower congestion and reduced latency
• Matter-over-Wi-Fi support
• Bluetooth Low Energy 5.4 supports Bluetooth low energy 2 Mbps, LE Long Range, Advertising Extensions, and Advertising code selection for LE Long Range
• Bluetooth Low Energy range and power are also optizized with up to +19 dBm transmit power
• Best-in-class LE Longe Range sensitivity of -111.5 dBm
• Extensive peripherals and GPIO support: 3xSCB(I2C/SPI/UART), TCPWM, 7 channel 12-bit ADC, Digital Microphone support, TCM (I2S/PCM), and up to 47 GPIOs
• Hardware support for AES, RSA, ECC, ECDHA, ECDSA, Root-of-Trust
• Multi-layer security supporting lifecycle management, secured boot with firmware authentication and encryption, anti-rollback, crypto key establishment, and management
• PSA Level 2 Certifiable
Now at Mouser u-blox explorer kit for rapid development of high precision GNSS applications
Mouser is now shipping the XPLR-HPG-1 Explorer kit from u-blox. This Explorer kit is comprised of a baseboard populated with a NORA-W106 module, which integrates a powerful dual-core 32-bit microcontroller with 802.11b/g/n Wi-Fi and dual-mode Bluetooth LE 5 connectivity. The baseboard also features three mikroBUS connectors with pre-mounted click boards hosting u-blox positioning and cellular modules. The GNSS RTK 2 click board features the ZED-F9R module, a high-precision dead-reckoning. The LBAND RTK click board includes the NEO-D9S module, a satellite data receiver for the L-band correction broadcast. The 4G LTE 2 click board features the LARA-R6001D, a compact LTE Cat 1 multi-mode module offering global coverage, enabling the reception of PointPerfect correction data via mobile networks. Equipped with its GNSS and communication modules, this Explorer kit can access correction data from a satellite broadcast via L-band satellite GNSS receiver or IP connectivity using LTE or Wi-Fi. PointPerfect, the u-blox GNSS augmentation service, provides correction data delivered via the Thingstream IoT service delivery platform. The XPLR-HPG-1 also supports the Networked Transport of RTCM via Internet Protocol (NTRIP. The XPLR-HPG-1 kit’s modular design also enables users to switch out Mikroe click boards. The Explorer kit provides a flexible, modular development and prototyping platform for centimetre-level accuracy positioning applications, such as autonomous robotics, asset tracking and connected health.
Industry-first embedded SIM from ST supports new standard for IoT
ST has introduced the ST4SIM-300, the first embedded SIM in the industry to meet the incoming GSMA standard for eSIM IoT deployment. Also known as SGP.32, the new standard introduces special features to facilitate managing IoT devices connected to cellular networks.
“Leveraging the incoming GSMA specification, our embedded SIM for IoT solution, ST4SIM-300, enhances flexibility, eases network provider switching, and simplifies managing large numbers of connected devices,” said Agostino Vanore, Edge Authentication and M2M Cellular Marketing Manager at STMicroelectronics. “In a more connected and secured world, it will enable seamlessly track assets across the globe, connect smart devices to the cloud, and securely handle data from billions of devices, supporting our healthcare and smart infrastructures, cities, factories, and homes.”
Unlike existing eSIM machine-to-machine (M2M) and eSIM Consumer specifications, eSIM for IoT (SGP.32) is created for the needs of today’s IoT deployments. ST’s ST4SIM-300 supports features including greater automation of remote SIM provisioning (RSP), easily managing SIM profiles for large fleets of devices, and remote switching between network providers that eliminates physical SIM card swaps. The new eSIM conforms to the latest 5G standard and facilitates deploying devices that have a limited user interface and deploying low-power wide-area network (LPWAN) devices.
ST is sampling ST4SIM-300 eSIMs in various form factors, including wafer-level chip-scale packages (WLCSP) suitable for smart meters, GPS trackers, asset monitors, remote sensors, medical wearables, and similar devices.
Built with an EAL6+ certified ST secure microcontroller, the ST4SIM-300 is architected for security from the ground up. Compatible with GSMA IoT SAFE applet the eSIM facilitates adding secure element features for end-to-end communication and supports scalable security by design for creators of IoT devices.
About Smart Cities
This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration