Rohm offers the industry’s smallest terahertz wave oscillation and detection devices

Rohm has begun offering samples of the industry’s smallest terahertz (THz) wave oscillation and detection devices utilising semiconductor elements known as Resonant Tunneling Diodes (RTDs). Terahertz waves are anticipated to be applied to non-destructive testing, imaging, and sensing in the medical and healthcare sectors, as well as potentially future ultra-fast communication technologies. Providing these devices contributes to the advancement of terahertz wave applications.

Rohm has developed a 0.5mm × 0.5mm RTD chip for terahertz wave generation and detection, capable of oscillating and detecting terahertz waves at a frequency of 320GHz (typ.) with an output power ranging from 10 to 20µW. Rohm will begin offering samples of this RTD element mounted in a PLCC package (4.0mm × 4.3mm) commonly used for LEDs. With an extremely compact size, typically one-thousandth of that of conventional oscillators, this innovation enables easy development of terahertz wave applications, even in space-constrained environments.

By positioning the antenna surfaces of the oscillation and detection devices facing each other 10mm apart, a dynamic range of 40dB (typ.) can be achieved. Both oscillator and detector maintain a drive power consumption of 10mW (typ.), while their ability to oscillate and detect terahertz waves at room temperature eliminates the need for cooling equipment required with some conventional methods. These compact, power-saving devices are almost unaffected by the operating environment, enabling use in a wide range of applications.

Rohm offers samples of terahertz wave oscillation and detection devices less than one-tenth the price of conventional devices. Rohm also provides evaluation kits that include an evaluation board and other components, allowing users to easily integrate the devices into a research and development environment. The sale of sample products and evaluation kits requires the prior signing of a non-disclosure agreement (NDA) with Rohm.

Occupying the frequency region between radio waves and light, terahertz waves exhibit a variety of distinctive characteristics, including excellent permeability similar to radio waves, straight-line propagation akin to laser beams, and unique absorption properties for materials such as polymers. As such, they are expected to be utilised for non-destructive testing, imaging of humans and materials without the use of dangerous radiation, high-speed communication as an alternative to conventional wireless transmission, and high-resolution radar sensing. However, conventional methods often require large equipment sizes and high implementation costs, often ranging from about tens of thousands to hundreds of thousands of dollars, making it challenging for private companies to actively pursue research or commercialise in the field of practical terahertz applications.

Since the late 2000s, Rohm has engaged in joint research with numerous universities and research institutes, such as the Institute of Science Tokyo and Osaka University. The key aim: developing terahertz wave oscillation and detection devices using RTD technology. Rohm is also involved in several consortia, including national projects (government R&D initiatives) sponsored by the Ministry of Internal Affairs and Communications (MIC), the National Institute of Information and Communications Technology (NICT), and the Japan Science and Technology Agency (JST), as well as the XG Mobile Promotion Forum and the Terahertz System Application Promotion Council.

In addition to various support contents, Rohm also offers evaluation kits that include devices and evaluation boards.

By combining measurement tools like Analog Discovery 3 from Digilent with a computer and software, users can easily operate terahertz wave oscillation and detection devices. Miniaturising both the device and evaluation board makes it possible to create a research and development environment even in limited spaces, such as a desktop.

https://www.rohm.com

> Read More

Rohm develops a 1kW class high power infrared laser diode

Rohm has developed a high output laser diode – RLD8BQAB3 – for use in ADAS (Advanced Driver Assistance Systems) equipped with LiDAR for distance measurement and spatial recognition. Rohm will initially start supplying samples targeting consumer and industrial applications such as drones, robot vacuum cleaners, AGVs (Automated Guided Vehicles), and service robots.

LiDAR is seeing growing adoption in recent years across a variety of applications that require automation such as automotive ADAS, AGVs, drones, and robot vacuums, facilitating precise distance measurement and spatial recognition. To detect information at greater distances with more accuracy, there is a need for laser diodes that serve as light sources to achieve high kW-level output while allowing multiple light sources to emit light at close intervals.

Rohm has established proprietary patented technology that achieves the narrow emission width of lasers, enhancing the long-distance, high accuracy LiDAR, beginning with the commercialisation of the 25W output RLD90QZW5 in 2019 and high-power 120W RLD90QZW8 in 2023. Building on these successes they have developed a new 125W 8ch (1kW class) array-type product that meets the demand for a high output, high performance laser diode.

The RLD8BQAB3 is an ultra-compact surface mount high-output 125W × 8ch infrared laser diode for LiDAR applications that utilise 3D ToF systems to carry out distance measurement and spatial recognition. The optimised design features 8 emission areas (each 300µm wide) per element, installed on a submount affixed to a high heat dissipation substrate.

The package’s emitting surface incorporates a clear glass cap – an industry first for a surface mount laser diode – eliminating the risk of light scattering caused by scratches during dicing that tends to occur with resin-encapsulated products, ensuring high beam quality. Each emission area is wired with a common cathode, enabling the selection of the irradiation method based on application needs – ranging from individual emission that increases the number of light-emitting points to industry-leading* simultaneous emission at ultra-high outputs of 1kW class.

The new product retains the key features of Rohm’s conventional laser diodes, including uniform emission intensity across the emission width along with a low wavelength temperature dependence of 0.1nm/°C (vs 0.26 to 0.28nm/°C for standard products). On top, the array configuration narrows the regions of reduced emission intensity between channels, while the bandpass filter minimises the effects of ambient light noise from the sun and other sources, contributing to long-distance detection and high-definition LiDAR.

https://www.rohm.com

 

> Read More

Nexperia enhances Energy Harvesting portfolio with innovative PMIC reducing BOM cost

Nexperia is expanding its energy harvesting portfolio with the NEH71x0 power management IC (PMIC) family. This advanced PMIC line combines performance, cost-efficiency, and versatility, setting a new standard in sustainable design for low power applications. These devices eliminate the need for an external inductor, reducing circuit board space and bill-of-materials (BOM) cost. It is available in a compact 4 mm x 4 mm QFN28 package. Applications include remote controls, key fobs, smart tags, asset trackers, occupancy sensors, environmental monitors, wearables, keyboards, tire pressure monitors, and any number of Internet of Things (IoT) applications.

These new PMICs represent a complete power management solution for energy harvesting: enabling engineers to extend battery life, recharge batteries or supercapacitors, and even eliminate batteries in certain designs, thanks to its cold start feature. With the NEH71x0 (NEH7100BU, NEH7110BU) PMICs, designers can choose from multiple ambient power sources such as light, kinetic/piezo or a temperature gradient. With an input power range from 15μW to 100mW, these high-performance energy harvesting ICs can convert energy with an efficiency of up to 95%. These devices include an on-chip maximum power point tracking (MPPT) adaptive algorithm to optimise the energy harvested, which adapts every 0.5 second, making the PMIC extremely responsive to changing environmental conditions.

The NEH71x0 family integrates a range of power management features to protect batteries and storage elements, including over-voltage protection, low-voltage detection, and over-current protection. The addition of a low dropout (LDO) regulator and USB charging further reduces the BOM cost and simplifies the design process. For greater functionality, the NEH710BU variant includes I2C programmability and measurement readings, giving engineers additional flexibility and control in their designs.

NEH71x0 complements NEH2000, Nexperia’s first energy harvesting power management IC – a compact, low-BOM converter – by adding more advanced energy harvesting features and a new set of power management features, marking the next step in a growing roadmap of innovative inductor-less energy harvesting products.

https://www.nexperia.com/energyharvesting

> Read More

New edge AI-enabled radar sensor and automotive audio processors from TI

Texas Instruments has introduced new integrated automotive chips to enable safer, more immersive driving experiences at any vehicle price point. TI’s AWRL6844 60GHz mmWave radar sensor supports occupancy monitoring for seat belt reminder systems, child presence detection and intrusion detection with a single chip running edge AI algorithms, enabling a safer driving environment. With TI’s next-generation audio DSP core, the AM275x-Q1 MCUs and AM62D-Q1 processors make premium audio features more affordable. Paired with TI’s latest analog products, including the TAS6754-Q1 Class-D audio amplifier, engineers can take advantage of a complete audio amplifier system offering.

Original equipment manufacturers (OEMs) are gradually designing in more sensors to enhance the in-vehicle experience and meet evolving safety standards. TI’s edge AI-enabled AWRL6844 60GHz mmWave radar sensor enables engineers to incorporate three in-cabin sensing features to replace multiple sensor technologies, such as in-seat weight mats and ultrasonic sensors, lowering total implementation costs by an average of US$20 per vehicle.

The AWRL6844 integrates four transmitters and four receivers, enabling high-resolution sensing data at an optimised cost for OEMs. This data feeds into application-specific AI-driven algorithms on a customisable on-chip hardware accelerator and DSP, improving decision-making accuracy and reducing processing time. The edge intelligence capabilities of the AWRL6844 sensor that help improve the driving experience include these examples:

• While driving, it supports occupant detection and localisation with 98% accuracy to enable seat belt reminders.
• After parking, it monitors for unattended children in the vehicle, using neural networks that detect micro-movements in real time with over 90% classification accuracy. This direct sensing capability enables OEMs to meet 2025 European New Car Assessment Program (Euro NCAP) design requirements.
• When parked, it adapts to different environments through intelligent scanning, reducing false intrusion detection alerts caused by car shaking and external movement.

As driver expectations grow for elevated in-cabin experiences across vehicle models, OEMs aim to offer premium audio while minimising design complexity and system cost. AM275x-Q1 MCUs and AM62D-Q1 processors reduce the number of components required for an automotive audio amplifier system by integrating TI’s vector-based C7x DSP core, Arm cores, memory, audio networking and a hardware security module into a single, functional safety-capable SoC. The C7x core, coupled with a matrix multiply accelerator, together form a neural processing unit that processes both traditional and edge AI-based audio algorithms. These automotive audio SoCs are scalable, allowing designers to meet memory and performance needs, from entry-level to high-end systems, with minimal redesign and investment.

TI’s next-generation C7x DSP core achieves more than four times the processing performance of other audio DSPs, allowing audio engineers to manage multiple features within a single core. AM275x-Q1 MCUs and AM62D-Q1 processors enable immersive audio inside the cabin with features such as spatial audio, active noise cancellation, sound synthesis and advanced vehicle networking, including Audio Video Bridging over Ethernet.

To further optimise their automotive audio designs, engineers can use TI’s TAS6754-Q1 audio amplifier with innovative 1L modulation technology to deliver class-leading audio performance and power consumption, with half the number of inductors compared to existing Class-D amplifiers. The TAS67xx-Q1 family of devices, which integrates real-time load diagnostics required by OEMs, helps engineers simplify designs, decrease costs, and increase efficiency without sacrificing audio quality.

https://www.TI.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration