R-Car Gen3e SoCs have up to 20 per cent higher CPU speed, says Renesas

Six SoCs have been added to the R-Car series by Renesas Electronics. The R-Car Gen3e series is a scalable series of devices for entry- to mid-range automotive applications that require high-quality graphics rendering. They can be used in integrated cockpit domain controllers, in-vehicle infotainment (IVI), digital instrument cluster, driver monitoring systems, and LED matrix lighting.

They have increased CPU performance up to 50k DMIPS and 2GHz speeds. to help vehicle manufacturers navigate demands for continuous user experience, security, and safety improvements.

As applications such as augmented reality navigation and artificial intelligence (AI) -based digital automotive assistants grows, OEMs and Tier 1s need to balance the demand for larger, higher resolution displays and high performance chips with rising bill of material (BoM) costs and longer development times, explained Naoki Yoshida, vice president automotive digital products marketing at Renesas. The R-Car Gen3e devices provide a migration path and full compatibility with Renesas’ current R-Car Gen3 SoCs.

The six models that have been added to the R-Car Gen3e SoCs series are the R-Car D3e, R-Car E3e, R-Car M3Ne, R-Car M3e, R-Car H3Ne, and R-Car H3e.

All have increased CPU, with the R-Car M3Ne, R-Car M3e, and R-Car H3e operating up to 2GHz.

An on-chip real-time Arm Cortex R7 CPU eliminates the need for an external vehicle controller combined with a Renesas PMIC, which reduces BoM costs. Development times are also reduced with reference designs for fast boot, human machine interface (HMI) and functional safety.

Renesas offers board support packages updated with the latest versions of the Linux and Android operating systems.

Pre-integrated software enables higher application integration, for example for 2D/3D cluster HMI, welcome animation, rear-view camera, and surround view applications, explains Renesas.

VirtIO technology allows developers to easily add the reference solutions to existing applications without changing the existing Linux or Android application

The SoCs also supports ASIL-B system safety requirements for applications such as telltale monitoring and camera freeze detection, as well as for true hardware separation in non-hypervisor cockpits

The R-Car Consortium (RCC) partner ecosystem includes system integrators, middleware/application developers, and operating system and tools vendors, providing innovative solutions for the connected car, ADAS, and gateway markets that enable customers to reduce development time and accelerate time to market for new products.

The R-Car Gen3e SoCs are sampling now.

https://www.renesas.com

> Read More

Hi-rel, rad-hard regulator, isolators and FET are for satellite power management

Renesas is targeting satellite power management with the ISL71001SLHM/SEHM point of load (PoL) buck regulator, ISL71610SLHM and ISL71710SLHM digital isolators, and the ISL73033SLHM 100V GaN FET and integrated low-side driver.

The ICs combine the board area savings and cost advantages of plastic packaging for space-grade projects missions in medium/geosynchronous Earth orbit (MEO/GEO) with longer lifetime requirements. They can also be specified for small satellites and higher density electronics where they reduce size, weight, and power (SWaP) costs, says Renesas.

The ICs also complement the radiation-tolerant plastic-package ICs Renesas introduced in 2017 for small satellites in low Earth orbit (LEO). Renesas says that its plastic IC offering supports multiple orbit ranges, balancing radiation performance and optimal cost for a variety of satellite subsystems and payloads.

“With every new mission, customers want more functionality, which requires larger satellite payloads and has traditionally translated into increased SWaP for the satellite systems,” said Philip Chesley, vice president, Industrial and Communications Business division at Renesas. He continued that the new ICs offer customers the “SWaP advantages of plastic packaging to save up to 50 per cent of the board area compared to ceramic-packaged devices, while maintaining the reliability and radiation assurance required for higher orbit missions with lifespans ranging up to and beyond 15 years.”

Traditionally, radiation-hardened (rad-hard) ICs were almost exclusively produced using hermetically sealed ceramic packages, which achieved the required reliability but had significant trade offs in terms of size and weight. The Renesas rad-hard plastic ICs help customers reduce their electronics footprint and cost without compromising performance, assured Renesas.

To ensure the plastic ICs adhere to the highest quality for operation in harsh space environments, the ICs have QMLV-like production level testing, and all devices will undergo radiation lot acceptance testing (RLAT).

The production test flow includes 100 per cent CSAM, x-ray, temperature cycling, static and dynamic burn-in, and visual inspection. It also aligns with the SAE AS6294/1 standard for plastic encapsulated microelectronics in space. Additional screening includes lot assurance testing per assembly and wafer lot product for HAST (highly accelerated stress test), life testing, and moisture sensitivity.

The rad-hard ICs are characterisation tested at a total ionising dose (TID) of up to 75krad(Si) for low dose rate (LDR) and at a linear energy transfer (LET) of 60MeV•cm2/mg or LET 86MeV•cm2/mg for single event effects (SEE). The ISL71001SEHM is rated at TID up to 100krad(Si) for high dose rate (HDR).

The ISL73033SLHM low-side driver and 100V GaN FET combines the GaN FET driver and GaN FET in a single package to simply gate design and improve efficiency. It is claimed to reduce area size by 20 per cent compared with an SMD 0.5 rad-hard MOSFET. Tolerance is 30A with 7.5mOhm (typical) RDS on with 100V VDS. The total gate charge is just 14nC (typical). The integrated driver features 4.5V regulated gate drive voltage and 3A/2.8A sink/source capability.

The ISL71610SLHM and ISL71710SLHM digital isolators are based on giant magneto-resistive (GMR) isolation technology, claimed to deliver better radiation tolerance compared with existing space grade optocouplers on the market. Other features are 2.5kV RMS isolation, 1.3A quiescent current, low EMI with no carrier or clock noise and up to 100Mbits per second data rates (ISL71610SLHM) or 150Mbits per second for the ISL71710SLHM.

The 6A ISL71001SLHM/SEHM buck regulator has 95 per cent peak efficiency, fixed 1MHz switching frequency and adjustable output voltage.

Customers can add the new rad-hard plastic ICs to their existing architecture with a new package type and production flow. The ISL71610SLHM and ISL71710SLHM ICs can also be combined with Renesas’ rad-hard and rad-tolerant CAN bus transceiver and RS-422 transceiver product families for use in serial communications systems.

The ISL71610SLHM, ISL73033SLHM and ISL71001SLHM are available now. The ISL71710SLHM will be available in September 2021 and the ISL71001SEHM will be available in Q4 2021.

https://www.renesas.com

> Read More

Analog Devices introduces first in iCoupler digital isolator family

The first in a series of iCoupler digital isolators by Analog Devices offers a total bandwidth of 10Gigabits per second. The ADN4624 digital isolator provides four channels at 2.5Gbits per second, allowing data to transfer seamlessly in the electrical domain. It enables new system architectures in digital health, instrumentation and smart industry, says Analog Devices.

The ADN4624 digital isolator streamlines design and integrates isolation for safety or data integrity. At 5.7kV rms isolation and 100 kV/microcsecond CMTI, the compact digital isolator meets medical standards and isolates high fidelity video and imaging links, precision analogue front ends and serial interconnects as an alternative to specialised fibre devices.

According to Analog Devices, the ADN4624 offers simplified connectivity, robust isolation and data integrity in harsh environments. The iCoupler digital isolator provides up to 10Gbits per second bandwidth in a single device. It allows for direct isolation of high-speed serial LVDS or CML at full speed and eliminates the complexity of deserialisation, adds Analog Devices. The ADN4624 enables precision timing with ultra-low jitter to deliver full ADC performance and resolution including precision ADC sampling clocks. Precision timing is less than one picosecond rms random jitter and less than 16 picoseconds skew.

The ADN4624 is available now in a 28-lead SOIC.

http://www.analog.com

> Read More

Renesas enables HD video over SD cables for automotive cameras

Automotive manufacturers can deliver high definition (HD) video over low cost cables and connector that currently support standard definition video, by using the Automotive HD Link (AHL) from Renesas.

The RAA279971 AHL encoder and RAA279972 decoder use a modulated analogue signal to transmit the video, for transmission rates 10 times less than required to transmit HD signals digitally. The lower transmission rate means that traditional twisted pair cables and standard connectors and existing analogue video cables and connectors can be used.

Digital links such as SerDes require heavily shielded cables and high end connectors that cost significantly more than those for AHL. Additionally they may need to be replaced in five to seven years. They are also difficult to route because of a limited bending radius.

AHL is robust against noise and has a bi-directional control channel that operates independently of the video data, says Renesas. It can initialise, program and monitor the camera module. The camera can be controlled simultaneously over the same pair of wires (UTP) during video transmission to reduce the cost of installation. In comparison to a digital link in a rear view camera application, a digital link will degrade due to a failure in the cable harness or connector assembly, as weak signals can cause macroblocks to appear, hiding large portions of the viewing area. Using the same cable under the same conditions for comparison, the AHL will present a slight change in video colour or contrast, but all pixels will appear on the screen. The resulting image will accurately identify an object or person behind the vehicle.

According to Renesas, the AHL system allows automotive manufacturers to deliver advance safety systems in all vehicles, including economy models and not just luxury ones.

AHL supports resolutions from VGA up to 720p/60 or 1080p/30 enabling it to implement non-standard vertical resolutions.

There are also MIPI-CSI2, BT656, and DVP inputs and outputs to provide a flexible interface to support old and new image sensors.

The RAA279971 AHL encoder and RAA279972 decoder are available today. Renesas also offers the RTKA279971DA2000BU AHL encoder and the RTKA279972DA1000BU AHL decoder evaluation boards.

http://www.renesas.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration