Single-stage flyback controllers from Infineon shape up smart LED lighting

Three single-stage flyback LED controllers for constant output voltages have been introduced by Infineon, in anticipation of increased demand for dimmable and intelligent LED systems.

The ICL8800, ICL8810 and ICL8820 single-stage flyback LED controllers meet performance requirements for LED lighting applications, such as LED drivers and luminaires up to 125W, smart lighting and emergency luminaires. The ICs can also be used in adapters and chargers, flat TVs as well as PCs and monitors up to 125W.

The three IC versions offer benchmarking performance for power factor correction and total harmonic distortion at full load and low load conditions, says Infineon. They are optimised as secondary side regulated (SSR) constant voltage (CV) output flyback controllers and are also suitable for primary side regulation (PSR). Critical conduction mode (CCM) and quasi-resonant mode (QRM) with smart valley hopping ensure low EMI without compromising light quality, says the company.

ICL8800 is the basic model, ICL8810 has an integrated burst mode that allows a very low standby power consumption of less than 100mW and flicker-free deep dimming down to 0.1 per cent. This makes the ICL8810 suitable for smart lighting applications in connection with microcontrollers. The ICL8820 is additionally equipped with an integrated DC-input jitter function to improve EMI performance and supports the fulfilment of EMI requirements in DC operation. The ICL8820 model is claimed to ease EMI certification in the design of emergency lighting LED driver applications without additional circuitry.

The ICL88xx family offers an external start-up circuit control signal with a set of protection features, including a power limitation and secondary side over-voltage protection. The ICs require a minimum number of external components, claims Infineon.

The gate driver current enables designs up to 125W with MOSFETs. System performance and efficiency can be further optimised using Infineon’s CoolMOS P7 power MOSFETs.

All three single-stage flyback LED controller variants are available in PG-DSO-8 packages and are available for order now.

http://www.infineon.com

> Read More

Hand-held camera cube reference design brings AI to the edge

Artificial intelligence (AI) which was previously limited to expensive machines with large power budgets can now be embedded in space-constrained, power-powered edge devices. Maxim Integrated says its MAXREFDES178# camera cube executes low latency AI vision and hearing inferences on a coin cell power budget with reduced cost and size.

The MAXREFDES178# enables low power IoT devices to implement hearing and vision. It is based on the MAX78000 low power microcontroller with neural network accelerator for audio and video inferences. The system also contains the MAX32666 low power Bluetooth microcontroller and two MAX9867 audio codecs. The system is delivered in a compact form factor to show how AI applications, such as facial identification and keyword recognition, can be embedded in low power, cost sensitive applications such as wearables and IoT devices.

AI applications require intensive computations, which is usually performed in the cloud or in expensive, power-hungry processors: self driving cars is an example. Maxim says that its MAXREFDES178# camera cube demonstrates how AI can operate on a low power budget, enabling applications that are time- and safety-critical to run on even the smallest of batteries. The MAX78000’s AI accelerator slashes the power of AI inferences up to 1,000x for vision and hearing applications, compared to other embedded solutions, reports Maxim. The AI inferences running on the MAXREFDES178# also show dramatic latency improvements, running more than 100x faster than on an embedded microcontroller.

The compact form factor of the camera cube (1.6 x 1.7 x 1.5inch of 41 x 44 x 39mm) allows AI to be implemented in wearables and other space-constrained IoT applications. The MAX78000 is up to 50 per cent smaller than the next-smallest GPU-based processor, says Maxim, and does not require other components like memories or complex power supplies to implement cost-effective AI inferences.

The MAXREFDES178# and the MAX78000 is available now, together with the MAX32666GWPBT+T RF microcontroller and the MAX9867EWV+T stereo codec   at Maxim Integrated’s website and authorised distributors.

http://www.maximintegrated.com

> Read More

R-Car Gen3e SoCs have up to 20 per cent higher CPU speed, says Renesas

Six SoCs have been added to the R-Car series by Renesas Electronics. The R-Car Gen3e series is a scalable series of devices for entry- to mid-range automotive applications that require high-quality graphics rendering. They can be used in integrated cockpit domain controllers, in-vehicle infotainment (IVI), digital instrument cluster, driver monitoring systems, and LED matrix lighting.

They have increased CPU performance up to 50k DMIPS and 2GHz speeds. to help vehicle manufacturers navigate demands for continuous user experience, security, and safety improvements.

As applications such as augmented reality navigation and artificial intelligence (AI) -based digital automotive assistants grows, OEMs and Tier 1s need to balance the demand for larger, higher resolution displays and high performance chips with rising bill of material (BoM) costs and longer development times, explained Naoki Yoshida, vice president automotive digital products marketing at Renesas. The R-Car Gen3e devices provide a migration path and full compatibility with Renesas’ current R-Car Gen3 SoCs.

The six models that have been added to the R-Car Gen3e SoCs series are the R-Car D3e, R-Car E3e, R-Car M3Ne, R-Car M3e, R-Car H3Ne, and R-Car H3e.

All have increased CPU, with the R-Car M3Ne, R-Car M3e, and R-Car H3e operating up to 2GHz.

An on-chip real-time Arm Cortex R7 CPU eliminates the need for an external vehicle controller combined with a Renesas PMIC, which reduces BoM costs. Development times are also reduced with reference designs for fast boot, human machine interface (HMI) and functional safety.

Renesas offers board support packages updated with the latest versions of the Linux and Android operating systems.

Pre-integrated software enables higher application integration, for example for 2D/3D cluster HMI, welcome animation, rear-view camera, and surround view applications, explains Renesas.

VirtIO technology allows developers to easily add the reference solutions to existing applications without changing the existing Linux or Android application

The SoCs also supports ASIL-B system safety requirements for applications such as telltale monitoring and camera freeze detection, as well as for true hardware separation in non-hypervisor cockpits

The R-Car Consortium (RCC) partner ecosystem includes system integrators, middleware/application developers, and operating system and tools vendors, providing innovative solutions for the connected car, ADAS, and gateway markets that enable customers to reduce development time and accelerate time to market for new products.

The R-Car Gen3e SoCs are sampling now.

https://www.renesas.com

> Read More

Hi-rel, rad-hard regulator, isolators and FET are for satellite power management

Renesas is targeting satellite power management with the ISL71001SLHM/SEHM point of load (PoL) buck regulator, ISL71610SLHM and ISL71710SLHM digital isolators, and the ISL73033SLHM 100V GaN FET and integrated low-side driver.

The ICs combine the board area savings and cost advantages of plastic packaging for space-grade projects missions in medium/geosynchronous Earth orbit (MEO/GEO) with longer lifetime requirements. They can also be specified for small satellites and higher density electronics where they reduce size, weight, and power (SWaP) costs, says Renesas.

The ICs also complement the radiation-tolerant plastic-package ICs Renesas introduced in 2017 for small satellites in low Earth orbit (LEO). Renesas says that its plastic IC offering supports multiple orbit ranges, balancing radiation performance and optimal cost for a variety of satellite subsystems and payloads.

“With every new mission, customers want more functionality, which requires larger satellite payloads and has traditionally translated into increased SWaP for the satellite systems,” said Philip Chesley, vice president, Industrial and Communications Business division at Renesas. He continued that the new ICs offer customers the “SWaP advantages of plastic packaging to save up to 50 per cent of the board area compared to ceramic-packaged devices, while maintaining the reliability and radiation assurance required for higher orbit missions with lifespans ranging up to and beyond 15 years.”

Traditionally, radiation-hardened (rad-hard) ICs were almost exclusively produced using hermetically sealed ceramic packages, which achieved the required reliability but had significant trade offs in terms of size and weight. The Renesas rad-hard plastic ICs help customers reduce their electronics footprint and cost without compromising performance, assured Renesas.

To ensure the plastic ICs adhere to the highest quality for operation in harsh space environments, the ICs have QMLV-like production level testing, and all devices will undergo radiation lot acceptance testing (RLAT).

The production test flow includes 100 per cent CSAM, x-ray, temperature cycling, static and dynamic burn-in, and visual inspection. It also aligns with the SAE AS6294/1 standard for plastic encapsulated microelectronics in space. Additional screening includes lot assurance testing per assembly and wafer lot product for HAST (highly accelerated stress test), life testing, and moisture sensitivity.

The rad-hard ICs are characterisation tested at a total ionising dose (TID) of up to 75krad(Si) for low dose rate (LDR) and at a linear energy transfer (LET) of 60MeV•cm2/mg or LET 86MeV•cm2/mg for single event effects (SEE). The ISL71001SEHM is rated at TID up to 100krad(Si) for high dose rate (HDR).

The ISL73033SLHM low-side driver and 100V GaN FET combines the GaN FET driver and GaN FET in a single package to simply gate design and improve efficiency. It is claimed to reduce area size by 20 per cent compared with an SMD 0.5 rad-hard MOSFET. Tolerance is 30A with 7.5mOhm (typical) RDS on with 100V VDS. The total gate charge is just 14nC (typical). The integrated driver features 4.5V regulated gate drive voltage and 3A/2.8A sink/source capability.

The ISL71610SLHM and ISL71710SLHM digital isolators are based on giant magneto-resistive (GMR) isolation technology, claimed to deliver better radiation tolerance compared with existing space grade optocouplers on the market. Other features are 2.5kV RMS isolation, 1.3A quiescent current, low EMI with no carrier or clock noise and up to 100Mbits per second data rates (ISL71610SLHM) or 150Mbits per second for the ISL71710SLHM.

The 6A ISL71001SLHM/SEHM buck regulator has 95 per cent peak efficiency, fixed 1MHz switching frequency and adjustable output voltage.

Customers can add the new rad-hard plastic ICs to their existing architecture with a new package type and production flow. The ISL71610SLHM and ISL71710SLHM ICs can also be combined with Renesas’ rad-hard and rad-tolerant CAN bus transceiver and RS-422 transceiver product families for use in serial communications systems.

The ISL71610SLHM, ISL73033SLHM and ISL71001SLHM are available now. The ISL71710SLHM will be available in September 2021 and the ISL71001SEHM will be available in Q4 2021.

https://www.renesas.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration