Biosensor module integrates PPG and ECG for mobile use

To deliver both photoplethysmogram (PPG) and electrocardiogram (ECG) measurements for health monitoring from a mobile, battery-powered device, Maxim Integrated Products has unveiled the MAX86150 at CES.

It is believed to be the first biosensor module to comprise internal LEDs, photodetectors and an ECG analogue front-end (AFE) to provide FDA-certifiable PPG and ECG performance in compact, power-saving designs.

Designed for mobile phones, laptops, tablets and smart speakers, it delivers synchronised PPG and ECG measurements without using two separate biosensors that together consume more board space and power than a mobile device can typically afford. As well as space, the design challenge has been to achieve high accuracy in the measurements, particularly in cases where sensor sensitivity might be impacted by low perfusion levels or dry skin.

The MAX86150 overcomes these challenges, sampling both PPG and ECG simultaneously to provide the highest sensitivity of pulse transit time. To reduce battery drain, the module can be shut down through software with near-zero standby current, allowing the power rails to remain powered at all times.

The MAX86150 is available in a 3.3 x 6.6 x 1.3mm, 22-pin optical module.

The module is accurate with common mode rejection ratio (CMRR), a measurement of noise rejection, of at 136dB, the module’s; the highest on the market, says Maxim. Its 100mA-capable, high-dynamic-range LED driver enables higher sensitivity on an array of skin types. In addition, a low-impedance contact for the ECG sensor enables more accurate measurements, even in cases of dry skin, says the company.

It minimises battery drain with low shutdown current of 0.7 microA typical and low power consumption extends battery life compared to competitive solutions.

The module’s dry electrode operation eliminates the need for gels, fluids and sticky or wet pads on other parts of the body to obtain accurate readings.

The MAX86150 is available now and the company also offers the MAX86150EVSYS# evaluation kit.

http://www.maximintegrated.com

> Read More

CUI includes digital and analogue MEMS microphones for portable devices

MEMS microphones from CUI are designed for portable devices. The CMM series has been added to CUI’s Audio Product group. They are compact, with a low profile and measure just 2.75 x 1.85 x 0.95mm.

The reflow solder compatible components can be used where surface mount assembly is required, such as audio recording and voice capture in smart phones, tablets, smart home devices and wearables.

The MEMS microphones are omni-directional and available in analogue or digital pulse density modulation (PDM) output types with top or bottom port locations. Offering round or rectangular form factors, the CMM series models carry sensitivity ratings from -44 up to -26dB and signal to noise ratios from 57 up to 65dBA. The MEMS microphones are also claimed to deliver reduced vibration sensitivity, low current draw down to 80 microA, and operating temperature ranges from -40 up to +105 degrees C. Sensitivity tolerances are as low as ±1.0dB, making the CMM series particularly suitable for performing functions such as beam forming and noise cancellation.

The inner chamber construction provides a stable performance, claims CUI, and protects the silicon-based microphones against moisture and dust.

The CMM series is available immediately.

https://www.cui.com

> Read More

Osram and GaN Systems develop fast laser driver for lidar

Optoelectronics specialist, Osram Opto Semiconductors, and GaN power semiconductor manufacturer, GaN Systems have collaborated on laser driver technology that enables longer range and higher resolution lidar architectures.

Osram’s laser portfolio for lidar includes the SPL DS90A_3 with a peak power of 120W at 40A. The company plans to release a four-channel SMT laser in 2019. The additional channels increase the field of view (FoV) and total peak power, with each channel being capable of generating 120W.

One of the issues with lidar technology has been its inability to transmit lasers at short pulses, while maintaining high peak power, which is necessary to ensure that the lidar with a long range and high resolution is safe to the human eye. To address this need, the two companies have developed a laser driver with a one nanosecond pulse rise time, while driving all four channels at 40A each to deliver 480W peak power. This peak power can be modulated at low-duty cycles to produce high resolution 3D cloud points at long range for new lidar designs.

Scanning lidar is used in advanced driver assistance systems (ADAS). Devices react instantly to potential collisions without wasting precious seconds of reaction time. Scanning lidar creates high-resolution 3D images of a car’s surroundings and registers obstacles early enough for ADAS, or self-driving cars, to initiate the appropriate driving manoeuvres, such as braking.

http://www.osram-os.com

> Read More

Developer toolbox supports STM32Cube microcontrollers at the edge

Driving artificial intelligence (AI) to edge and node embedded devices, STMicroelectronics has introduced the STM32 neural network developer toolbox.

AI uses trained artificial neural networks to classify data signals from motion and vibration sensors, environmental sensors, microphones and image sensors, more quickly and efficiently than conventional handcrafted signal processing.

The STM32Cube.AI extension (X-Cube-AI) software tool generates optimised code to run neural networks on STM32 microcontrollers. It can be downloaded inside ST’s STM32CubeMX MCU configuration and software code-generation ecosystem.

Today, the tool supports Caffe, Keras (with TensorFlow backend), Lasagne, ConvnetJS frameworks and integrated development environments (IDEs) including those from Keil, IAR, and System Workbench.

The FP-AI-Sensing1 software function pack provides examples of code to support end-to-end motion (human-activity recognition) and audio (audio-scene classification) applications based on neural networks. This function pack leverages ST’s SensorTile reference board to capture and label the sensor data before the training process. The board can then run inferences of the optimised neural network.

The ST Bluetooth low energy (BLE) Sensor mobile app acts as the SensorTile’s remote control and display.

The toolbox consists of the STM32Cube.AI mapping tool, application software examples running on small form factor, battery-powered SensorTile hardware, together with the partner program and dedicated community support offers a fast and easy path to neural network implementation on STM32 devices.

The extension is supplied with ready-to-use software function packs containing code examples for human activity recognition and audio scene classification that are immediately usable with ST‘s reference sensor board and mobile app.

Developer support is provided through qualified partners in the ST Partner Program and dedicated AI/machine learning (ML) STM32 community, assures the company.

ST explains that STM32Cube.AI can be used by developers to convert pre-trained neural networks into C-code that calls functions in optimised libraries that can run on STM32 microcontrollers.

Accompanying software function packs include example code for human activity recognition and audio scene classification. These code examples are immediately usable with the ST SensorTile reference board and the ST BLE Sensor mobile app.

ST will demonstrate applications developed using STM32Cube.AI running on STM32 microcontrollers in a private suite at CES, the Consumer Electronics Show, in Las Vegas, (8 to 12 January).

http://www.st.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration