Binder unveils printing technique that gives sensors a new dimension

Functional electronic layers can be laid directly on a component, says binder. The binder Innovation & Technology Center has developed the direct printing technique.

As digitisation increases and smart systems proliferate, there is a need for a balance between more complex sensor networks with data processing and simpler, more user friendly operator support, says binder. The trend toward miniaturisation makes it difficult to equip parts due to a limited amount of space with conventional sensors. The binder method of direct printing is claimed to overcome all these challenges. Dr Stefan Ernst, one of the co-developers of the new printing technique, explains: “The printed electronics need less space. In addition, they are more flexible in application and more cost efficient,” he said.

Using a recently developed transfer printing technique, binder was able, for the first time, to apply planar functional electronic layers with a thickness of maximum precision to textured, three-dimensional surfaces in only one printing pass.

Circuit traces, sensors and displays, for example, can be printed without the need for foils or other substrate materials. A protective layer can be overprinted and specially developed nano pastes provide stable parameters for the printing process.

Intended uses in the industrial area range from flexible circuit traces and heating elements to sophisticated sensors. By printing capacitive sensor elements, for example, touch displays of almost any shape can be implemented on three-dimensional and/or textured surfaces. The same approach can also be used for an intuitive gesture control system. Temperature sensors or strain gauges can be implemented by measuring the change in the resistance values of the printed functional layers. The flexible printing technique allows the sensor to be quickly adapted to the application-specific task.

The newly created binder electronic solutions group provides custom-made solutions for connectors, contacts, circuit layout and automatic placement. Services range from design and prototype to series production.

http://www.binder-connector.de

> Read More

Multi-sensor module is for developers with the IoT bug

SmartBug is an intelligent multi-sensor IoT module by TDK. The InvenSense module combines TDK’s MEMS sensors and precision algorithms in a simple, wireless unit.

It is designed as a dedicated source of smart sensor data for a range of IoT applications from smart homes and appliances to wellness monitoring.

The module enables quick and easy access to reliable and smart sensor data without the need for programming, soldering or extra modifications, says TDK. The SmartBug integrates TDK’s six-axis IMU (gyroscope and accelerometer) with magnetometer, pressure, temperature, humidity and ultrasonic sensors and high-precision algorithms. These algorithms include sensor fusion, HVAC filter monitoring, asset monitoring, gesture detection, activity classification, air mouse monitoring and smart door open/close detection.

The SmartBug module enables accurate and remote monitoring via both Bluetooth Low Energy (BLE) and Wi-Fi and provides autonomous SD card data logging capability for IoT applications with large data volumes.

The SmartBug is small with a flat base and is designed to be placed almost anywhere, from a simple door to an industrial robot for remote data collection. The module can be used by product developers across consumer and commercial IoT applications, advises InvenSense, a TDK Group company.

InvenSense partners Nordic Semiconductor, AKM, Sensirion, and Espressif Systems provide an ecosystem set of components that enable multiple key features within the SmartBug module.

Nordic Semiconductor’s low power microcontroller with BLE 5.2 acquires multi-sensor data from the SmartBug and runs all supported algorithms. It enables streaming of smart sensor data via both USB and BLE, and provides over the air (OTA) firmware upgrades and support for add-on cards with SD card logging and ultrasonic sensors.

The WiFi chip from Espressif Systems expands the wireless data streaming and logging capabilities of SmartBug to higher throughput (up to 2KHz) and long ranges.

AKM’s magnetometer enables multiple features including compass data collection, nine-axis sensor fusion for accurate orientation heading and magnetic anomaly detection for asset monitoring applications in SmartBug.

SmartBug also leverages the humidity and temperature sensor from Sensirion for data streaming and logging, humidity and temperature-based events for asset monitoring applications.

The SmartBug sensor module is currently stocked at TDK’s distribution partners including Arrow, Avnet, DigiKey, Mouser, Symmetry and Components Distributors.

http://invense.tdk.com

> Read More

Smart sensors are the jewel in the crown

Scientists have taken inspiration from the biomimicry of butterfly wings and peacock feathers to develop an opal-like material for use in smart sensors.

Scientists, led by the Universities of Surrey and Sussex, have developed colour-changing, flexible photonic crystals that could be used to develop sensors that warn when an earthquake might strike next.

The research draws on the Materials Physics Group’s (University of Sussex) expertise in the liquid processing of two-dimensional nanomaterials, Soft Matter Group’s (University of Surrey) experience in polymer colloids and combines it with expertise at the Advanced Technology Institute in optical modelling of complex materials. Both universities are working with the Sussex-based company Advanced Materials Development (AMD) Ltd to commercialise the technology.

The wearable, robust and low-cost sensors can respond to light, temperature, strain or other physical and chemical stimuli making them a promising option for cost-effective, smart, visual sensing applications in sectors such as healthcare and food safety.

In research, published by Advanced Functional Materials, the team outlines a method to produce photonic crystals containing a minuscule amount of graphene and which results in outputs that can be directly observed by the naked eye.

The material is intensely green under natural light, but the sensors change colour to blue when stretched, and turn transparent when heated.

Dr. Izabela Jurewicz, Lecturer in Soft Matter Physics at the University of Surrey’s Faculty of Engineering and Physical Sciences, said “This work provides the first experimental demonstration of mechanically robust yet soft, free-standing and flexible, polymer-based opals containing solution-exfoliated pristine graphene. While these crystals are beautiful to look at, we’re also very excited about the huge impact they could make to people’s lives.”

Potential applications for the sensors are time-temperature indicators (TTI) for intelligent packaging. The sensors are able to give a visual indication if perishables, such as food or pharmaceuticals, have experienced undesirable time-temperature histories. The crystals are extremely sensitive to even a small rise in temperature between 20 and 100 degrees C.

They can also be used in fingerprint analysis where their pressure-responsive shape-memory characteristics can reveal fingerprints, showing well-defined ridges, for biometric access systems.

They sensors’ mechanochromic response also makes them suitable as body sensors to help improve technique in sports players. They could also be used in a wrist band which changes colour to indicate to patients if their healthcare practitioner has washed their hands before entering an examination room.

http://www.sussex.ac.uk

> Read More

Signal conditioner IC targets industry 4.0, medical and IoT sensor applications

The latest addition to the sensor signal conditioner (SSC) range is the ZSSC3240. According to Renesas, it delivers high accuracy, sensitivity, and flexibility for sensor applications such as resistive pressure sensors and medical infra red thermometers. It is also claimed to deliver best-in-class performance and speed with up to 24 bits analogue to digital conversion (ADC) resolution.

The ZSSC3240 has a flexible sensor front end and a range of output interfaces, enabling the SSC to be used for nearly all types of resistive and absolute voltage sensor elements. Engineers can develop complete sensing platforms from a single SSC device, said Renesas. It is also small in size, for use in a variety of sensor-based devices for the industrial, consumer, and medical markets, including smart meters, continuous smart health monitors, factory automation devices, industrial pressure transmitters, HVAC sensors and weight scales.

Unlike micro-machined and silicon-based sensing elements which provide mostly non-linear and very small signals, which need to be converted into a linearised output, the ZSSC3240 SSC provides programmable, wide gain and quantisation functions, combined with powerful, high-order digital correction and linearisation algorithms, explained Renesas. High performance, and flexible sensor front end configuration and analogue output options enable sensor platform design using a single IC, allowing users to leverage the SSC cost effectively for a wide variety of sensor elements that have different characteristics.

The ZSSC3240 SSC has a high-gain analogue front end supporting up to 540V per Volt (V/V) and an integrated 26bit DSP for high-precision sensor calibration. Current loop output is 4.0 to 20 mA.

The ZSSC3240 SSC is available now in a 4.0 x 4.0mm, 24-lead QFN package. The SSC is also available in bare die format.

 http://www.renesas.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration