Measurement ICs double battery life and have highest accuracy, claims Maxim

Three ICs from Maxim Integrated allow designers to achieve double the battery life, while offering protection and what is claimed to be the highest accuracy for IoT, industrial and healthcare applications.

The trio are the MAX41400 instrumentation amplifier, the MAX40108 precision operational amplifier and the MAX31343 real time clock (RTC) with integrated MEMS oscillator.

IoT and battery-operated sensors require the development of systems that provide longer battery life while accurately measuring real world voltages, forces and pressures. Battery life is extended from the previous limit of 7.4 hours to 11.5 hours. Power budgets demand these sensors achieve precision on the first measurement, with little to no calibration. An added challenge is that for industrial and IoT applications, these sensors must withstand extreme physical conditions of temperature, humidity and mechanical abuse.

The MAX41400 instrumentation amplifier enhances sensor system accuracy by a factor of four, and extends battery life by 55 per cent compared to the closest competitive offering, claims Maxim. It provides low offset of 25 microV, low noise and programmable gain with only 65 microA current consumption.

The MAX40108 is claimed to be the lowest voltage precision operational amplifier in its class, operating with supplies as low as 0.9V. This low operational supply voltage is combined with a lower power consumption and 25.5 microA quiescent current which allows engineers to double sensor battery life, Maxim explains.

The MAX31343 I²C RTC with integrated MEMS oscillator provides timekeeping accuracy of ±5ppm; a figure “substantially better than the closest competitor”, according to Maxim. An integrated MEMS resonator also offers robust protection, i.e.  shock resistance of above 2900G and vibration resistance of above 50G to  eliminate crystal mechanical failures.   

All these products offer multiple and small form factor package choices.

The MAX41400 is available now, and an evaluation kit, the MAX41400EVKIT#, is also available.

The MAX40108 is available from the company and its authorised distributors, together with the MAX40108EVKIT# evaluation kit.

The MAX31343 and MAX31343SHLD# evaluation kit are also available.

http://www.maximintegrated.com

> Read More

Infineon secures contactless transactions with crypto controllers

As contactless payment, identity, ticketing and access operations gain traction, Infineon Technologies has developed the 40nm SLC36 / SLC37 security controller platforms. They are based on the high performance, energy efficient 32bit Arm SecurCore SC300 dual interface security chips and supplemented with a Solid Flash memory.

The 40nm technology enables internal clock frequencies of up to 100MHz, which is particularly crucial for short transaction times, says Infineon. The two security controller families have a range of dual interface and contactless modules, including traditional and inductive coupling technologies.

The 40nm technology platform complies with cryptological requirements for AES and ECC standards and is qualified for Secora solution, for payment, IoT and ID applications. Infineon adds that contactless transactions can be reliably secured and that transaction times can also be reduced. They also support the ISO14443 type A/B and ISO18092 (NFC) standards for contactless, and ISO7816, for contact-based interfaces

The crypto controllers support the implementation of sophisticated payment, ID, and multi-applications, including small form factor wearables, such as watches, rings, jewellery, and metal cards.

All products can be adapted to all regional requirements for regional market requirements.

Products of the 40nm SLC36 / SLC37 controller-based crypto platforms are available now. Certificates from EMVCo and BSI for CC are available.

http://www.infineon.com

> Read More

SiP integrates cellular and GNSS technology

Swiss positioning and wireless communication specialist, u-blox, has integrated low power wide area (LPWA) connectivity and a global navigation satellite system (GNSS) technology into a small system in package (SiP) form factor. The Alex-R5 is a miniature cellular module designed for size-constrained asset tracking, wearable and healthcare applications.

It features the secure u-blox UBX-R5 LTE-M / NB-IoT chipset with Secure Cloud functionality and the u-blox M8 GNSS chip for location accuracy.

Alex-R5 has a small footprint of 14 x 14mm footprint. The SiP design reduces its size by half, compared to the functionally equivalent u-blox SARA-R5 module.

Its 23dBm cellular transmission power guarantees that end devices operate effectively in all signal conditions, even at cell edges, underground, or in other challenging scenarios. A dedicated GNSS antenna interface enables fully independent, simultaneous operation of the u-blox M8 GNSS chip, matching the performance of a stand-alone u-blox M8 module. To further enhance positioning, there is the u-blox IoT Location-as-a-Service with CellLocate and AssistNow (online, offline, and autonomous).

Alex-R5 is optimised for power-sensitive and battery-dependent applications, says u-blox, including wearables and connected medical devices. The lower power modes of the u-blox UBX-R5 and UBX-M8 chipsets give users options to balance power consumption and performance using GNSS Super-E mode.

The rugged SiP construction is suitable for harsh environments, where moisture or vibration would be a concern for conventional modules, says u-blox. Alex-R5 is rated at moisture sensitivity level 3 (MSL 3), offering reduced handling and device production complexity.

u-blox guarantees long-term device availability and provides lifetime support for the entire platform, down to the chipset level. Secure Cloud functionality supporting IoT-Security-as-a-Service based on an internal, hardware-based secure element enables a pre-shared key management system specifically designed for LPWA devices.

In addition, Alex-R5 futureproofs IoT devices and networks by enabling customers to software upgrade deployed devices for compatibility with 5G networks in a seamless transition as 5G networks are rolled out by mobile operators.

Engineering samples of the Alex-R5 SiP will be available by Q1, 2021.

http://www.u-blox.com

> Read More

Web authentication IC to make NFC authentication scalable

Swiss semiconductor company, EM Microelectronic, announces full volume production of em|linq, the NFC tag authentication IC. em|linq offers to brands the possibility to engage with their customers via NFC and to offer advanced product authentication.

NFC tags are a popular support for consumer engagement, turning any smartphone into a portal for accessing brand content. When the NFC tag content is dynamic, the tags also provide enhanced protection against cloning.

Scalability requires robust, cost-effective products but the authentication component adds cost and complexity typical to smartcards, making the return on investment proposition more difficult. In response, em|linq combines powerful cryptographic mechanisms typically reserved to smartcard products with the convenience and affordability of RFID products, says EM Microelectronic.

It is based on proven, open standards, allowing for full degree of freedom in the implementation of the authentication service. The key management and provisioning. critical for the security architecture, can be handled and fully controlled by the company who implements the solution, regardless of its position in the value chain, whether inlay or label manufacturer, integrator, brand or retailer.

Programming the cryptographic keys into the chips is segregated from programming the URL for the authentication service, providing additional flexibility and security for the system implementation.

The IC also opens up integration possibilities for electronic labels. Its small form factor provides superior mechanical robustness, says EM Electronic. Its power efficiency enables small antenna form factor to enhance communication performance. Electrical characteristics are compatible with most of the antenna designs on the market, reducing the engineering effort.

The authentication engine is built on top of a traditional RFID architecture rather than by simplifying a cumbersome smartcard one. Adding the authentication functionality remains an extension of a traditional RFID use case, with no unnecessary overhead. The tags are produced using the same process flow and with the same quality and cost-effectiveness as the standard RFID products. EM Electronic says its RF performance allows for very small inlay constructions, for ease of integration and to reduce the cost.

em|linq is NFC Type-2 compliant. Optimised cryptographic hardware implementation provides best-in-class web authentication brand protection to consumers’ smartphones, claims EM Electronic, using a dynamically generated HMAC-SHA1 code appended to the URL stored in the NDEF container.

http://www.emmicroelectronic.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration