Bluetooth 5.0 for RE microcontroller uses SOTB for energy harvesting

The latest member of Renesas Electronics’ RE family of microcontroller is the RE01B, which has Bluetooth 5.0 support. The 32-bit low power microcontroller was developed using Renesas’ SOTB (Silicon on Thin Buried Oxide) process technology.

The Bluetooth-capable RE01B is suitable for energy harvesting systems and intelligent IoT devices that operate constantly at extremely low power levels without having to replace or recharge batteries. The RE01B microcontroller makes it easier to implement regular data management and firmware updates over Bluetooth while maintaining low power consumption, which extends the battery life.

The on-chip energy harvesting control circuit (rapid start up capacitor charging and secondary battery charge protection functionality) allows users to achieve battery-less Bluetooth communication. Energy harvesting and power storage can be directly connected to the RE01B.

The microcontroller is suitable for compact healthcare devices such as pulse oximeters and biomedical sensor patches, remote controls with voice recognition capabilities and smart meter modules. RE01B can also be used for IoT devices that require constant operation, period data collection and updates, such as devices for monitoring the elderly, children or assets in transit.

The RE01B is built around the Arm Cortex-M0+ core and Renesas’ proprietary SOTB process technology. It operates at a maximum operating frequency of 64MHz and achieves current consumption as low as 35 microA/MHz during operation and 600nA during standby; this is among the lowest in the industry for a Bluetooth-capable microcontroller, says Renesas. It can also be combined with Renesas’ ISL9123 ultra-low Iq DC/DC converter, configured as an external step-down regulator, to reduce current consumption during operation down to 15 microA/MHz to improve power efficiency.

It has 1.5Mbyte flash memory and 256Kbyte SRAM with Bluetooth functionality, suitable for over the air (OTA) firmware updating.

The RE01B is in a 64-pin QFN package measuring 8.0 x 8.0mm.

Security function include Trusted Secure IP and Renesas offers application programming interfaces (APIs) conforming to standard protocols, such as heart rate profile (HRP), environment sensing profile (ESP), and automation I/O profile (AIOP), in addition to Bluetooth 5.0 protocol stack.

Development tools for the RE family, include a QE for Bluetooth Low Energy, which generates programs for custom Bluetooth profiles that can then be integrated into the user’s own application programs, and a Bluetooth test tool suite, which provides a graphical user interface that allows users to perform initial wireless characteristics evaluations and Bluetooth functionality verification.

The RE01B is available now. The EB-RE01B evaluation kit from Tessera Technology is also available now.

http://www.renesas.com

> Read More

ST extends STM32WB series with extra power-saving modes

Devices that combine entry-level features with extra power savings have been added to the STM32WB Bluetooth Low Energy microcontroller series.

The dual-core STM32WB15 and STM32WB10 Value Line pair an Arm Cortex-M4 processor, which runs the main application with a Cortex-M0+ for Bluetooth 5.2 connectivity. ST explains that this ensure real-time performance from each. The radio stage has a 102dBm link budget to ensure reliable connections over long distances and integrates balun circuitry to save board space and reduce the bill of materials.

The STM32WB15 and STM32WB10 have a power saving mode that allows the radio to remain operational. They also have tailored peripherals and memory to suit cost-sensitive, power-conscious embedded applications including wearables, beacons, smart circuit breakers, trackers, IoT endpoints, and equipment for industrial automation.

There is a software development kit (SDK) for each microcontroller. This includes standardised radio protocol stacks and openness to proprietary protocols with a set of security mechanisms that ensure safe software updates for device integrity. There is also Proprietary Code Read-Out Protection (PCROP) to guard intellectual property.

The STM32WB series scales across package variants, offering options such as extended general purpose I/Os and pin-to-pin compatibility between similar packages of the portfolio. Customers can migrate designs between devices to take advantage of different features and memory densities.

The development ecosystem includes STM32Cube-certified radio stacks, software expansion packs and sample code, the STM32CubeMX configurator and initialisation code generator, the STM32CubeIDE development environment, a powerful STM32CubeMonitor-RF evaluation tool, and associated Nucleo hardware tools.

The STM32WB15 and STM32WB10 microcontrollers are in production now, offering various pin-compatible configurations in a QFN48 package.

http://www.st.com

> Read More

Measurement ICs double battery life and have highest accuracy, claims Maxim

Three ICs from Maxim Integrated allow designers to achieve double the battery life, while offering protection and what is claimed to be the highest accuracy for IoT, industrial and healthcare applications.

The trio are the MAX41400 instrumentation amplifier, the MAX40108 precision operational amplifier and the MAX31343 real time clock (RTC) with integrated MEMS oscillator.

IoT and battery-operated sensors require the development of systems that provide longer battery life while accurately measuring real world voltages, forces and pressures. Battery life is extended from the previous limit of 7.4 hours to 11.5 hours. Power budgets demand these sensors achieve precision on the first measurement, with little to no calibration. An added challenge is that for industrial and IoT applications, these sensors must withstand extreme physical conditions of temperature, humidity and mechanical abuse.

The MAX41400 instrumentation amplifier enhances sensor system accuracy by a factor of four, and extends battery life by 55 per cent compared to the closest competitive offering, claims Maxim. It provides low offset of 25 microV, low noise and programmable gain with only 65 microA current consumption.

The MAX40108 is claimed to be the lowest voltage precision operational amplifier in its class, operating with supplies as low as 0.9V. This low operational supply voltage is combined with a lower power consumption and 25.5 microA quiescent current which allows engineers to double sensor battery life, Maxim explains.

The MAX31343 I²C RTC with integrated MEMS oscillator provides timekeeping accuracy of ±5ppm; a figure “substantially better than the closest competitor”, according to Maxim. An integrated MEMS resonator also offers robust protection, i.e.  shock resistance of above 2900G and vibration resistance of above 50G to  eliminate crystal mechanical failures.   

All these products offer multiple and small form factor package choices.

The MAX41400 is available now, and an evaluation kit, the MAX41400EVKIT#, is also available.

The MAX40108 is available from the company and its authorised distributors, together with the MAX40108EVKIT# evaluation kit.

The MAX31343 and MAX31343SHLD# evaluation kit are also available.

http://www.maximintegrated.com

> Read More

Infineon secures contactless transactions with crypto controllers

As contactless payment, identity, ticketing and access operations gain traction, Infineon Technologies has developed the 40nm SLC36 / SLC37 security controller platforms. They are based on the high performance, energy efficient 32bit Arm SecurCore SC300 dual interface security chips and supplemented with a Solid Flash memory.

The 40nm technology enables internal clock frequencies of up to 100MHz, which is particularly crucial for short transaction times, says Infineon. The two security controller families have a range of dual interface and contactless modules, including traditional and inductive coupling technologies.

The 40nm technology platform complies with cryptological requirements for AES and ECC standards and is qualified for Secora solution, for payment, IoT and ID applications. Infineon adds that contactless transactions can be reliably secured and that transaction times can also be reduced. They also support the ISO14443 type A/B and ISO18092 (NFC) standards for contactless, and ISO7816, for contact-based interfaces

The crypto controllers support the implementation of sophisticated payment, ID, and multi-applications, including small form factor wearables, such as watches, rings, jewellery, and metal cards.

All products can be adapted to all regional requirements for regional market requirements.

Products of the 40nm SLC36 / SLC37 controller-based crypto platforms are available now. Certificates from EMVCo and BSI for CC are available.

http://www.infineon.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration