MEMS timing accelerates wireless charging says SiTime

For power-sensitive and space-constrained mobile and IoT applications, the SiT3901 uPower digitally controlled MEMS oscillator (DCXO) has been introduced by SiTime. It improves wireless charging speed by up to 25 per cent while reducing the overall timing solution area by up to 90 per cent, says the company. The MEMS oscillator is suitable for wireless charging systems for smart watches, activity trackers, hearing aids, and wearables.

“The power and size requirements of new wireless applications demand a new approach to timing,” says Piyush Sevalia, executive vice president of marketing at SiTime. “The SiT3901 DCXO is the industry’s first µPower digitally controlled oscillator, and it delivers by improving charging efficiency and reducing the area,” he adds.

Wireless charging standards such as Qi and AirFuel rely on resonant power transfer to enable proximity charging. However, environmental interference may dynamically impact the resonant charging frequency, which slows down the charging process. The SiT3901 enables the charger to dynamically tune the resonant frequency, maximising power transfer and delivering up to 25 per cent faster charging. The digital control feature on the SiT3901 DCXO eliminates the need for additional passive components on the board, reducing the timing solution area by up to 90 per cent. The resulting charging system works better and is smaller, more manufacturable, and more reliable, claims SiTime.

The SiT3901 DCXO extends SiTime’s µPower MEMS oscillator family targeting power and space-constrained wearable, hearable, IoT, and mobile applications. The µPower MEMS oscillators consume up to 90 per cent less power and up to 90 per cent less space compared to quartz oscillators, enabling environmentally friendly electronics. The SiT3901 offers high resilience to analogue noise and includes low 105 microA current consumption (typical), a wide digital pull range (up to 15 per cent) for output frequency and a programmable frequency of 1.0 to 26MHz. They are stable over temperature of ±50 and ±100 ppm and have a wide operating temperature range of -40 to +85 degrees C.

The oscillators are supplied in a small 1.5 x 0.8mm package size.

http://www.sitime.com

> Read More

Cryptographic controller protects with lowest power budget, claims Analog Devices

Claimed to provide 30 times lower power and industrial-grade protection for battery-powered devices, the MAXQ1065 has been released by Analog Devices.

The low power cryptographic controller features ChipDNA PUF (physically unclonable functionality) technology, which is claimed to offer the strongest protection for edge to cloud IoT nodes, including medical and wearable devices, against invasive security attacks. The security co-processor provides 30 times lower power when compared to similar products, claimed ADI and its extended lifetime and operating range make it suitable for long-term deployments in harsh environments.

The MAXQ1065 security co-processor provides turnkey cryptographic functions for root of trust, mutual authentication, data confidentiality and integrity, secure boot, secure firmware update, and secure communications. It includes standard algorithms for key exchange and bulk encryption, or complete transport layer security (TLS) support. The device integrates 8kbyte of secure storage for user data, keys, certificates and counters with user-defined access control and life cycle management functionality for IoT equipment.

The MAXQ1065’s small footprint and low pin count allow for easy integration into medical and wearable devices. The MAXQ1065 life cycle management allows flexible access control rules during the major life cycle stages of the device and end equipment, enabling it to be used for long-term operation in harsh environments. In addition to the proprietary PUF technology to resist attacks, the MAXQ1065 is also supported by Analog Devices’ secure key pre-programming service for customers who want keys, data and life cycle state initialised prior to shipment to a contract manufacturer.

Analog Devices has a comprehensive suite of analogue and mixed signal, power management, radio frequency (RF), and digital and sensor technologies. ADI serves 125,000 customers worldwide operating in the industrial, communications, automotive, and consumer markets.

https://www.analog.com

> Read More

Secure embedded controllers integrate AI/ML acceleration

Built to power the next generation, always-connected IoT products, Alif Semiconductor’s Ensemble and Crescendo families are power-efficient devices which integrate AI/ML acceleration, multi-layered security, LTE Cat-M1 and NB-IoT connectivity, GNSS positioning, and memory.

The Ensemble family scales from single Arm Cortex®-M55 microcontrollers to so-called fusion processors which blend up to two Cortex-M55 cores, up to two Cortex-A32  microprocessor cores capable of running high-level operating systems, and up to  two Arm Ethos-U55 microNPUs for artificial intelligence (AI) and machine learning (ML)  acceleration.

The Ensemble family devices contain an advanced secure enclave that provides device integrity protection, secure identity, strong  root-of-trust and secure lifecycle management. They also have large on-chip SRAM and non-volatile memory, accelerated graphics, imaging, making them suitable for smart home automation, appliances, point of sale (PoS) terminals and robotics applications, said the company.

The Crescendo family offers the same functionality as the Ensemble family, with the addition of LTE Cat-M1 and NB-IoT cellular connectivity, optional iSIM for simplified subscriber management, integrated RF, power amplifiers, and a concurrent GNSS receiver. These capabilities make them well-suited for smart city, connected infrastructure, asset tracking, healthcare devices and wearable devices said the company, using a single chip to minimise size and weight.

To address the reliance on battery power in IoT devices, which can be challenging when there is a high requirement for local processing, AI/ML, and wireless communication, Alif Semiconductor has also introduced Autonomous Intelligent Power Management (aiPM) technology that allows fine-grained control of when resources  in the chip are being powered. This results in low power operation, enabling intelligent devices to last longer on smaller batteries.

“The solution that Alif delivers fills a significant gap in the market,” said Jerome Schang, head of Microsoft Azure Edge Silicon devices strategy. “We are always on the lookout for the most efficient technology platforms for our Edge experiences, and the Ensemble and Crescendo families are very well aligned with our customers’ needs.”

Ensemble and Crescendo devices are sampling now to lead customers. They are supported by Alif Semiconductor’s software, development tools and kits. Production qualification will be complete in 1Q22.

https://www.alifsemi.com/

> Read More

Farnell extends Nordic Semiconductor offering with its first PMIC

The first power management IC (PMIC) from Nordic Semiconductor, the nPM1100, is now available from Farnell. Claimed to be the industry’s most compact PMIC, it is intended for wearable electronics, remote controls, personal medical devices and smart home sensors.

The nPM1100 can be used as a generic PMIC for any application using rechargeable Li-ion/Li-Po batteries, advised Farnell. PCB space requirements are as low as 23mm², makes it particularly well suited to be integrated into wearables, connected medical devices and projects which have limited space. No configuration software is required to operate as all settings are pin-configurable. It can be used to conserve energy in designs, and can charge small batteries while providing efficient power management in

The nPM1100-CAAA is a small form factor dedicated PMIC with a dual-mode configurable buck regulator and integrated battery charger. It is a complementary component to Nordic’s SoCs and also has over-voltage protection, low current mode and an operating range of -40 to +85 degrees C.

Farnell also offers the nPM1100 evaluation kit which does not require software to operate and is performance optimised for the PMIC with electrical connectors and physical interfaces for operation. It features switches for all selectable settings, buttons to enter and exit ship mode and connectors for batteries, USB and headers for all pins on the PMIC. The kit may be used with other development kits such as Nordic’s nRF5340-DK or it can be used to test the PMIC’s functionality with non-Nordic products. The kit also includes indicator LEDs for charge and error indication.

Nordic Semiconductor specialises in low power wireless technology with Bluetooth Low Energy solutions, complemented by ANT+, Bluetooth mesh, Thread, and Zigbee products.

Lee Turner, global head of semiconductors and single board computing at Farnell said: “We are pleased to expand our PMIC range with the latest products from Nordic Semiconductor. The . . .  nPM1100 is an ideal solution to help our customers reduce energy consumption in their designs. The ability to charge small batteries and extend battery life while providing efficient power management within small, space constrained applications, such as wearables and connected medical devices, is now of critical importance.”

http://www.farnell.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration