Wireless power receiver from Renesas has WattShare TRx mode

Renesas Electronics has added the P9415-R wireless power receiver to its portfolio. The 15W receiver uses WattShare technology and enables smartphones, power banks, and portable industrial and medical equipment, to wirelessly charge other mobile devices and accessories that also have wireless charging capabilities.

The P9415-R features up to 5W of transmit power capability in transmitter/receiver (TRx) mode, as well as receive up to 15W on Qi transmitters, enabling quick and convenient mobile device charging on the go.

Renesas believes the P9415-R will bring WattShare technology to a wider audience. It combines receiver and transmitter capabilities, allowing smartphones, smart watches, wireless ear buds and other devices to be wirelessly charged simply by placing them on top of a smartphone or other industrial and medical portable devices.

In WattShare TRx mode, the P9415-R enables these mobile devices to change the power flow direction and deliver up to 5W of power to charge other devices. Customers can use the same wireless power coil and same P9415 circuitry to both receive and transmit power wirelessly.

The P9415-R wireless power receiver has an MTP non-volatile memory for easy firmware and device function updates. It also has graphic user interface (GUI) support for user customisation.

It receives up to 30W in proprietary mode and has under voltage lockout down to 2.7V which increases the available charging area and connection times. Sensory accuracy has been improved compared with earlier devices in Renesas’ wireless portfolio to increase foreign object detection capabilities.

The receiver also has bi-directional communications to support proprietary authentication with encryption and x-y alignment circuitry for better receiver/transmitter device alignment.

It is also Renesas’ first WPC 1.3-ready wireless power receiver based on the Wireless Power Consortium’s latest inductive standard.

 Renesas produces both the power receivers (PRx) used in smartphones and other applications, as well as the power transmitters (PTx) used in charging pads and automotive in-car applications.

The P9415-R 15W WattShare wireless power receiver is available now.

http://www.renesas.com

> Read More

Cadence digital and custom tool suite is optimised for TSMC’s 3nm process

The collaboration between Cadence and TSMC has broadened as the partners announce that the former’s digital full flow and custom tool suite has been optimised for TSMC’s 3nm (N3) process technology.

The Cadence tools have achieved the latest design rule manual (DRM) and Spice certification for the N3 process. These innovations assist in driving and delivering next-generation mobile, artificial intelligence (AI) and high performance computing (HPC) applications, developed on the N3 process technology, says Cadence, with reference flows and methodologies.

Customers can download the corresponding N3 process design kit (PDK) to begin design projects now.

The updated digital full flow for N3, features enhanced physical optimisation and timing signoff closure. It includes the Innovus Implementation System, Liberate Characterisation, Liberate Variety Statistical Characterisation, Quantus Extraction Solution, Tempus Timing Signoff Solution, Voltus IC Power Integrity and Pegasus Verification System. In addition, the Genus Synthesis and its predictive iSpatial technology is enabled for these process technologies for mobile, AI and hyperscale designs, adds Cadence.

The digital suite and available reference flows help customers achieve better power, performance and area (PPA) while designing on TSMC’s N3 process. Tool suite enhancements include, improved extraction accuracy, updated routing rules, accurate LVF-generation during characterisation and robust support of advanced colouring.

The certification on TSMC’s N3 process includes the Virtuoso Custom IC design platform, consisting of the Virtuoso Schematic Editor, Virtuoso Layout Suite and Virtuoso ADE Product Suite, the Voltus-Fi Custom Power Integrity Solution, and the Spectre Circuit Simulation Platform, which includes the Spectre X Simulator.

Custom enhancements for TSMC’s N3 process technology include expanded 3nm design rule support, custom digital colour remastering, enhanced analogue cell support, additional productivity improvements with an enhanced device-level place and route flow and a front-to-back legacy-node design migration flow.

Suk Lee, senior director of the Design Infrastructure Management Division at TSMC, commented: “Our latest work enables our customers to design with the tools, benefitting from the significant power and performance boost of TSMC’s 3nm process technology and to quickly launch their new product innovations to market.”

http://www.cadence.com

> Read More

STMicroelectronics adds Zigbee 3.0 support for wireless microcontrollers

Based on Zigbee PRO protocol stacks, Zigbee 3.0 has been added to the STM32WB55 wireless microcontrollers. The company says that STM32 developers can leverage the interoperability and power-saving features of Zigbee to enhance networking for projects such as home automation, smart lighting, smart building, and broader IoT connectivity.

Zigbee 3.0 unifies the features of Zigbee specifications for consumer and industrial applications. Consumer and internet brands have elected to choose Zigbee connectivity for smart home products.

ST’s Zigbee 3.0 software for STM32WB55 includes the Exegin Zigbee PRO protocol stack, which is provided free of charge, and delivered and fully supported by ST. The stack is used in Exegin products certified as Zigbee Golden Units and is approved as a reference stack for use by test laboratories. ST supports 46 Zigbee 3.0 clusters to establish the capabilities of devices. Another21 clusters support legacy products.

STM32WB55 microcontrollers also support Thread and Bluetooth 5.0, with over the air (OTA) update capability. There are 10 STM32WB55 variants, in a choice of package styles and flash density from 256kbyte to 1Mbyte. The company has announced that it will introduce further variants in Q3.

Devices feature the Arm Cortex-M4 with floating point unit, DSP instructions and a memory protection unit (MPU) that enhances application security. Arm Cortex-M0+ co-processor is dedicated to managing the integrated IEEE 805.15.4 radio. The microcontroller’s cyber protection features ensures real time, low layer operations run smoothly without compromising application execution. The RF transceiver has a link budget of 106dB, to ensure reliable connections over distance.

The STM32WB55 devices are based on patented low power microcontroller technologies and integrate features such as radio balun circuitry. These characteristics are designed to help designers meet tight power and size constraints in a range of IoT and wearable devices. There are rich analogue and system peripherals, as well as cyber-protection, adds ST, and ID features including secure firmware installation (SFI), customer key storage, hardware public key authority (PKA), and cryptographic accelerators. Capacitive touch and LCD controllers simplify user-interface integration.

The Zigbee 3.0 software is now included in the STM32CubeWB MCU package, which provides embedded software including low-layer (LL) application programming interfaces (APIs) and hardware abstraction layer (HAL) drivers for STM32WB microcontrollers, as well as Bluetooth 5.0, Mesh V1.0, and Thread libraries, FreeRTOS kernel, FatFS file system and the STMTouch capacitive-sensing library.

The STM32Cube ecosystem includes the STM32CubeMonitor-RF for RF testing and STM32CubeMX for device configuration and code generation.

http://www.st.com

> Read More

Renesas extends Bluetooth 5.0 security to RA 32-bit microcontrollers

Bluetooth 5.0 connectivity has been extended to the RA family of 32-bit microcontrollers by Renesas Electronics, with the introduction of the RA4W1, with an Arm Cortex-M core.

In addition to the 8MHz, 32-bit Arm Cortex-M4 core, it has an integrated Bluetooth 5.0 low energy radio and is delivered in a 56-pin QFN package. The RA4W1 microcontroller and Flexible Software Package (FSP) enables engineers to immediately begin development with Arm ecosystem software and hardware building blocks, says Renesas. FSP features FreeRTOS and middleware for device-to-cloud development. Renesas also points out that options can be replaced and expanded with any other RTOS or middleware.

The RA4W1 microcontroller allows embedded designers to develop safe and secure IoT endpoint devices for industry 4.0, building automation, metering, healthcare, consumer wearable and home appliance applications. It is intended for engineers developing IoT edge devices for wireless sensor networks, IoT hubs, an add-on to gateways and an aggregator to IoT cloud applications.

Sakae Ito, vice president of IoT Platform Business Division at Renesas, said that customers can use the on-chip features, such as Renesas’ Secure Crypto Engine. This feature supports customers with symmetric encryption and decryption, hash functions, true random number generation (TRNG), and advanced key handling with key generation and microcontroller-unique key wrapping for strong key management for IoT security. It also has what is claimed to be best-in-class output power consumption and sensitivity for secure, longer range applications.

The Arm Cortex M4 core and Bluetooth 5.0 core are housed in a 7.0 x 7.0mm 56-pin QFN. The single-chip RA4W1 48MHz microcontroller features 512 kbyte flash memory, 96 kbyte SRAM and connectivity such as USB, CAN and Renesas’ HMI capacitive touch technology.

Bluetooth 5.0 support includes 2 Mbits per second data throughput, all advertising extension functions with maximum advertising length (1,650 byte), periodic advertisements and channel selection algorithm #2 for applications requiring large amounts of traffic. The RA4W1 also offers low peak power consumption at 3.3mA during receiving and 4.5mA (at 0dBm) while transmitting. Renesas claims its sensitivity of -105dBm in 125 kbits per second mode is an industry best and is achieved without additional loss from external components.

Renesas provides several API functions that conform to all standard profiles, including a heart rate profile (HRP), an environment sensing profile (ESP) and an automation I/O profile (AIOP), to allow users to quickly start and speed up prototype development and evaluation.

Renesas’ Smart Configurator GUI generates Bluetooth code and microcontroller peripheral function driver code as well as pin settings for the e2 Studio integrated development environment (IDE). The Renesas QE tool for Bluetooth LE generates programs for custom profiles and embeds them in user application programs to support application program development. The Bluetooth Trial Tool Suite GUI allows users to perform initial wireless characteristics evaluations and Bluetooth functional verification. Users can typically have the RA4W1 evaluation board up and running with the downloadable smartphone applications demo in less than 30 minutes, says Renesas.

Integrating a high-precision, low-speed on-chip oscillator, an RF oscillator adjustment circuit and on-chip matching circuit for easy antenna connection reduces both bills of materials costs and circuit board area.

http://www.renesas.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration