ST extends STM32WB series with extra power-saving modes

Devices that combine entry-level features with extra power savings have been added to the STM32WB Bluetooth Low Energy microcontroller series.

The dual-core STM32WB15 and STM32WB10 Value Line pair an Arm Cortex-M4 processor, which runs the main application with a Cortex-M0+ for Bluetooth 5.2 connectivity. ST explains that this ensure real-time performance from each. The radio stage has a 102dBm link budget to ensure reliable connections over long distances and integrates balun circuitry to save board space and reduce the bill of materials.

The STM32WB15 and STM32WB10 have a power saving mode that allows the radio to remain operational. They also have tailored peripherals and memory to suit cost-sensitive, power-conscious embedded applications including wearables, beacons, smart circuit breakers, trackers, IoT endpoints, and equipment for industrial automation.

There is a software development kit (SDK) for each microcontroller. This includes standardised radio protocol stacks and openness to proprietary protocols with a set of security mechanisms that ensure safe software updates for device integrity. There is also Proprietary Code Read-Out Protection (PCROP) to guard intellectual property.

The STM32WB series scales across package variants, offering options such as extended general purpose I/Os and pin-to-pin compatibility between similar packages of the portfolio. Customers can migrate designs between devices to take advantage of different features and memory densities.

The development ecosystem includes STM32Cube-certified radio stacks, software expansion packs and sample code, the STM32CubeMX configurator and initialisation code generator, the STM32CubeIDE development environment, a powerful STM32CubeMonitor-RF evaluation tool, and associated Nucleo hardware tools.

The STM32WB15 and STM32WB10 microcontrollers are in production now, offering various pin-compatible configurations in a QFN48 package.

http://www.st.com

> Read More

Miniature wireless comms modules address low power edge devices

Miniature Wi-Fi and Bluetooth Low Energy modules from InnoPhase combne wireless connectivity and an integrated microcontroller for edge of network IoT devices that require low power and a direct-to-cloud connection.

The fabless semiconductor company has introduced the Talaria Two INP1012 and INP1013 modules for a range of products including smart home, smart industrial and smart health applications. The miniature modules are 40 per cent smaller than the original INP1010 and INP1011 modules, which introduced digital radio architecture and which claimed to provide the lowest power Wi-Fi connectivity in the industry.

The INP1012 includes an RF pin for routing the antenna signal onto a main PCB. This allows for independent antenna or antenna connector selection and solder pads. The INP1013 includes a ceramic chip-antenna mounted on the module and solder pads.

Typical smart IoT applications use a significant percentage of the overall system power for Wi-Fi connectivity – up to 75 per cent, explained InnoPhase, even while idly connected to the network. The INP1012 and INP1013 Talaria Two modules can increase the battery lifetime by months or years and require less space, claimed InnoPhase. The INP1012 module also has the capability to allow the user to select the antenna connection and placement. This makes it particularly suitable for industrial applications.

The INP1012 and INP1013 modules can be used in smart door locks, remote security cameras, connected sensors or other space-constrained products within home, commercial, industrial and health markets.

The INP1012 and INP1013 modules use the Talaria Two multi-protocol SoC, with Wi-Fi and Bluetooth Low Energy 5 for wireless data transfer, an embedded Arm Cortex-M3 for system control and user applications, there are also advanced security elements for device safeguards.

The modules can operate in standalone mode, in conjunction with an external microcontroller or in a hybrid mode where the system control and processing responsibilities are shared between the module and an external microcontroller.

The module can be connected to a single power supply and when general purpose I/Os are connected to the peripherals, the system is ready for use, said InnoPhase.

All modules will be certified with the Wi-Fi Alliance and Bluetooth SIG and include government body certifications such as FCC, IC (Canada) and CE/RED approval.

http://www.innophaseinc.com

> Read More

SiP integrates cellular and GNSS technology

Swiss positioning and wireless communication specialist, u-blox, has integrated low power wide area (LPWA) connectivity and a global navigation satellite system (GNSS) technology into a small system in package (SiP) form factor. The Alex-R5 is a miniature cellular module designed for size-constrained asset tracking, wearable and healthcare applications.

It features the secure u-blox UBX-R5 LTE-M / NB-IoT chipset with Secure Cloud functionality and the u-blox M8 GNSS chip for location accuracy.

Alex-R5 has a small footprint of 14 x 14mm footprint. The SiP design reduces its size by half, compared to the functionally equivalent u-blox SARA-R5 module.

Its 23dBm cellular transmission power guarantees that end devices operate effectively in all signal conditions, even at cell edges, underground, or in other challenging scenarios. A dedicated GNSS antenna interface enables fully independent, simultaneous operation of the u-blox M8 GNSS chip, matching the performance of a stand-alone u-blox M8 module. To further enhance positioning, there is the u-blox IoT Location-as-a-Service with CellLocate and AssistNow (online, offline, and autonomous).

Alex-R5 is optimised for power-sensitive and battery-dependent applications, says u-blox, including wearables and connected medical devices. The lower power modes of the u-blox UBX-R5 and UBX-M8 chipsets give users options to balance power consumption and performance using GNSS Super-E mode.

The rugged SiP construction is suitable for harsh environments, where moisture or vibration would be a concern for conventional modules, says u-blox. Alex-R5 is rated at moisture sensitivity level 3 (MSL 3), offering reduced handling and device production complexity.

u-blox guarantees long-term device availability and provides lifetime support for the entire platform, down to the chipset level. Secure Cloud functionality supporting IoT-Security-as-a-Service based on an internal, hardware-based secure element enables a pre-shared key management system specifically designed for LPWA devices.

In addition, Alex-R5 futureproofs IoT devices and networks by enabling customers to software upgrade deployed devices for compatibility with 5G networks in a seamless transition as 5G networks are rolled out by mobile operators.

Engineering samples of the Alex-R5 SiP will be available by Q1, 2021.

http://www.u-blox.com

> Read More

DAC includes non-volatile memory to simplify handheld designs, says Microchip

Microchip claims to have overcome the problems of implementing multi-channel system control or signal outputs using DACs in portable and handheld industrial, communications, consumer or medical systems. To overcome the need for  significant processor overhead for device configuration during power-up, the MCP47/48FxBx8 family of octal 12-bit DACs include non volatile memory and an integrated voltage reference (Vref) source so they can be pre-configured for safe and efficient power-up without relying on the system processor.

“Handhelds and other portable systems are expected to deliver more capabilities in smaller, simpler designs,” said Bryan J. Liddiard, vice president of Microchip’s mixed-signal and linear business unit. “We help achieve this goal with the first DACs that eliminate processor overhead during power-up and provide the channel density, low power consumption and integrated features that today’s compact systems need so they can operate over longer periods using smaller, lighter batteries,” he added.

The inclusion of non-volatile memory means that the MCP47/48FxBx8 DACs can store user-customised configuration data even when powered down. At power-up, all eight channels are then configured to the pre-defined state without burdening the system processor with this overhead.

Integrating a Vref source into the DACs reduces overall system size and complexity while providing the control to meet critical timing for safely driving all power outputs. The devices also have both SPI and I2C serial interfaces for a choice of device communication.

Operating voltage range is 1.8V to 5.5V and the DACs’ low minimum operating voltage and its power efficiency are claimed to improve thermal performance and reliability. The DACs also provide power-on/brown-out reset protection and what is claimed to be one of the industry’s fastest settling times at five micro seconds. They also operate in the extended temperature range (i.e. -40 to +125 degrees C) for industrial and automotive applications.

The MCP47/48FxBx8 family of DACs is available for volume orders. The family includes 8-, 10- and 12-bit resolution devices in a 20-lead VQFN 5.0 x 5.0mm package and a 20-lead TSSOP package.

http://www.microchip.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration