Bridgetek adds PanL relay to control smart devices

Bridgetek has added the PanL relay to its PanL home automation connectivity platform for the control of smart devices.

According to the company, it brings greater functionality to installed systems to increase levels of comfort. It can deliver smart switching capabilities, via one of the system’s PanL human machine interface (HMI) touch displays. Incorporating PanL relays in a home automation implementation will allow users to be able to activate or deactivate domestic appliances and other items of electrical equipment (like fans, lamps and outdoor heaters).

The relays are contained within compact, low profile enclosures, measuring 145.7 x 96.7 x 29.5mm. Each has a 100MHz-rated, 32-bit FT903 RISC microcontroller, four standard electromechanical relays for conventional control requirements and four solid state relays for controlling higher power electrical devices. All relays have corresponding status indicators, so that users can see what is being controlled.

PanL Relay units can be powered from a 16 to 24V DC supply. They connect directly, via RS485 interfaces to the PanL hub which is at the centre of the home automation system. It is possible to daisy chain multiple units together, for large-scale implementations where more capacity is required (such as residential complexes or office buildings).

The PanL relays are CE- and FCC-compliant.

Founded in 2016, Bridgetek supplies ICs and board level products. The company’s Embedded Video Engine (EVE) graphic controller ICs integrate display, audio and touch functionality in a single chip to reduce the time period and bill-of-materials costs associated with developing next generation HMI systems. These are complemented by its speed-optimised microcontrollers with augmented connectivity features.

http://www.brtchip.com

> Read More

Sub-compact board has desktop system flexibility, says Aaeon

Powered by eighth generation Intel Core processors, the Gene-WHU6 is the latest compact board from Aaeon. It is built for full-sized applications, says the company, with full-sized functionality and is able to deliver the flexibility of a desktop system in a compact form factor.

The GENE-WHU6 is powered by eighth Generation Intel Core i3, i5, i7 and Celeron processors (formerly Whiskey Lake) and combines this processing power with up to 32Gbyte of DDR4 SODIMM RAM.

It is designed for full-sized functionality, with a full set of I/O features, including four USB 3.2 Gen 2 ports, two Gigabit Ethernet ports, and up to two COM ports supporting RS-232/ RS-422/ RS-485. The Gene-WHU6 also offers flexibility with display ports, featuring HDMI 2.0, VGA and LVDS. A full-sized mPCIe slot and two M.2 slots (one 2280 B Key and one 2230 E Key) allow for expandability. The Gene-WHU6 supports artificial intelligence (AI) accelerator modules, such as Aaeon’s Kneron KL520 NPU modules or the AI Core X family featuring Intel Movidius Myriad X.

The Gene-WHU6 is built to power embedded applications and is designed for tough conditions, says Aaeon. It has a wide voltage input (9.0 to 36V) and a wide operating temperature range (0 to 60 degrees C). These attributes, combined with the compact 3.5-inch form factor, the Gene-WHU6 can be deployed in smart manufacturing and intelligent safety and security applications.

Aaeon can provide customers with custom configurations and end-to-end project support.

Established in 1992, Aaeon designs and manufactures intelligent IoT computing platforms, including industrial motherboards and systems, industrial displays, rugged tablets, embedded controllers, network appliances and related accessories, as well as integrated solutions. Aaeon also has the hardware and services for premier OEM/ODMs and system integrators worldwide.

As an Associate Member of the Intel Internet of Things Solutions Alliance, the company offers customised services from initial product conceptualisation and board product development to mass manufacturing and after-sales service programmes.

http://www.aaeon.com

> Read More

NXP offers Wi-Fi 6 processors for automotive and IoT

Wi-Fi 6 (802.11ax) devices from NXP Semiconductors support developers’ efforts to adopt the latest Wi-Fi standards. The company says its expanded Wi-Fi 6 portfolio applies to connectivity for automotive, access, mobile and industrial and IoT markets.

Wi-Fi 6 delivers symmetric multi-gigabit uploads and downloads, lower latency, increased capacity and improved power efficiency, explains NXP. These technical advancements have so far been limited to premium products but NXP says these benefits are now available for large-scale deployment across multiple markets, enabling products with up to four-fold performance improvement, greater range, improved battery life and greater connection reliability for Wi-Fi capabilities. Wi-Fi 6 connectivity can be applied to smart homes, connected cars, and industrial machinery.

The portfolio consists of the 88W9064 and 88W9068, 4×4 and 8×8-stream solutions with integrated Bluetooth 5 for home and enterprise access solutions, the 88Q9098 concurrent dual Wi-Fi 2×2+2×2 + Bluetooth 5 AEC-Q100-qualified devices for infotainment and telematics automotive applications, the 88W9098, concurrent dual Wi-Fi 2×2+2×2 + Bluetooth 5 devices for multimedia streaming and consumer access applications. Others are IoT-focused 2×2 WiFi 6 + Bluetooth 5 devices.

NXP’s RF front-end solutions are based on silicon germanium (SiGe) and can scale Wi-Fi 6 capabilities from low to high-end applications, including 1×1, 2×2, 4×4 and 8×8 multiple input, multiple output (MIMO). It is packaged in a compact 3.0 x 4.0mm module for mobile products.

“To date, the adoption of Wi-Fi 6 has predominantly been driven by smartphones. However, we expect significant traction to build within the IoT, infrastructure, and automotive markets throughout 2020 and beyond. said Andrew Zignani, Wi-Fi, Bluetooth, and Wireless Connectivity Principal Analyst at ABI Research.

When combined with the processing power of the EdgeVerse platform, NXP enables smart connected devices, connecting people to the internet, joining IoT devices to the cloud, or communicating with cars.

NXP Semiconductors says it is the world leader in secure connectivity solutions for embedded applications, and is driving innovation in the automotive, industrial and IoT, mobile, and communication infrastructure markets. It has more than 60 years of combined experience and expertise, with employees in more than 30 countries.

http://www.nxp.com

> Read More

Sensor hub DSP architecture makes sense of surroundings

Claimed to be the industry’s first high performance sensor hub DSP architecture, SensPro is configurable for parallel processing floating point and integer data types, as well as deep learning training and inferencing.

Ceva has designed it to handle the sensor processing and sensor fusion workloads for contextually-aware devices.

It addresses the need for specialised processors to efficiently handle the proliferation of different types of sensors that are required in smartphones, robotics, automotive, AR/VR headsets, voice assistants, smart home devices and for industrial and medical applications. These camera, radar, lidar, time of flight (ToF) sensors, microphones and inertial measurement units (IMUs) generate data types and bit-rates derived from imaging, sound, RF and motion, which can be used to create a full 3D contextually-aware device, says CEVA.

The SensPro architecture is built from the ground up to maximise performance per Watt for multi-sensor processing use cases. It combines high performance single and half precision floating-point maths required for high dynamic range signal processing, point cloud creation and deep neural network (DNN) training. It also has 8-bit and 16-bit parallel processing capacity for voice, imaging, DNN inference processing and simultaneous localisation and mapping (SLAM). SensPro incorporates the Ceva-BX scalar DSP, which offers a seamless migration path from single sensory system designs to multi-sensor, contextual-aware designs.

Dimitrios Damianos, technology and market analyst of the sensing division at Yole Développement (Yole) commented: “The proliferation of sensors in intelligent systems continues to increase, providing more precise modelling of the environment and context. Sensors are becoming smarter, and the goal is not to get more and more data from them, but higher quality of data especially in cases of environment/surround perception. . . .  where many sensors . . . must work together to make sense of their surroundings”.

Yohann Tschudi, technology & market analyst, computing and software, at Yole continued: “The challenge is to process and fuse different types of data from different types of sensors. Using a mix of scalar and vector processing, floating and fixed point math coupled with an advanced micro-architecture, SensPro offers system and SoC designers a unified processor architecture to address the needs of any contextually-aware multi-sensor device.”

SensPro uses a configurable eight-way VLIW architecture, allowing it to be easily tuned to address a range of applications. Its micro-architecture combines scalar and vector processing units and incorporates an advanced, deep pipeline enabling operating speeds of 1.6GHz at a 7nm process node.

A Ceva-BX2 scalar processor for control code execution has a 4.3 CoreMark/MHz score. It adopts a wide SIMD scalable processor architecture for parallel processing and is configurable for up to 1024 8×8 MACs, 256 16×16 MACs, dedicated 8×2 binary neural networks support, as well as 64 single precision and 128 half precision floating point MACs. This allows it to deliver 3TOPS for 8×8 networks inferencing, 20TOPS for binary neural networks inferencing, and 400GFLOPS for floating point arithmetic. Additionally, a memory architecture provides a bandwidth of 400Gbyte per second, four-way instruction cache, two-way vector data cache, DMA, and queue and buffer managers for offloading the DSP from data transactions.

Ceva also offers software and development tools, including an LLVM C/C++ compiler, Eclipse based integrated development environment (IDE), OpenVX API, software libraries for OpenCL, Ceva deep neural network (CDNN) graph compiler including the CDNN-Invite API for inclusion of custom AI engines, Ceva-CV imaging functions, Ceva-SLAM software development kit and vision libraries, ClearVox noise reduction, WhisPro speech recognition, MotionEngine sensor fusion, and the SenslinQ software framework.

Initially, SensPro DSPs will be available in three configurations:  SP250 (single vector unit with 256 8×8 MACs targeting imaging, vision, and sound centric applications), SP500F (single vector unit with 512 8×8 MACs and 64 single precision floating point MACs targeting SLAM applications) and SP1000 (dual vector units with 1024 8×8 MACs and binary networks support targeting AI applications).

The SensPro architecture and cores will be made available for general licensing from Q3 2020.

https://www.ceva-dsp.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration