Finally, A 12 V to 12 V Dual Battery Automotive Bidirectional DC-to-DC Controller for Redundancy

The signs are everywhere that the self-driving car revolution is about to shift into full gear. Automotive companies are joining up with tech giants like Google and Uber, as well as prominent start-ups, to develop the next-generation autonomous vehicles that will alter our roads and throughways and lay the framework for future smart cities. They’re harnessing technological advances such as machine learning, the Internet of Things (IoT), and the cloud in order to accelerate this development.
More significantly, autonomous vehicles will advance the industry disruption already set in motion by popular ride-sharing services like Uber and Lyft. The pieces are coming together to create a world where intelligent and driverless vehicles become the future of transportation.

Eventually, all self-driving cars will employ a combination of sensors, cameras, radar, high performance GPS, light detection and ranging (lidar), artificial intelligence (AI), and machine learning to achieve a level of autonomy. Connectivity to secure and scalable IoT, data management, and cloud solutions are also important to the mix, as they provide a resilient and high performance foundation on which to collect, manage, and analyze sensor data.

The rise of the connected vehicle has far-reaching societal implications, from environmental benefits to improved safety. Fewer cars on the road also means a reduction in greenhouse gas emissions, leading to lower energy consumption and better air quality.

For both self-driving cars and smart roadway systems, endpoint telemetry, smart software, and the cloud are essential enablers. The onboard cameras and sensors in autonomous vehicles collect vast amounts of data, which must be processed in real time to keep the vehicle in the right lane and operating safely as it heads to its destination.

Cloud-based networking and connectivity is another important part of the mix. Autonomous vehicles will be outfitted with onboard systems that support machine-to-machine communications, allowing them to learn from other vehicles on the road in order to make adjustments that account for weather changes and shifting road conditions such as detours and in-path debris. Advanced algorithms and deep learning systems are central to ensuring that self-driving cars can quickly and automatically adapt to changing scenarios.

Beyond the specific components, such as scalability of cloud computing infrastructure and intelligent data management, there is a need for redundancy of mission critical systems, including power sources. There are previously released redundant battery solutions available, like the LTC3871 which works with two batteries that have different voltage ratings, such as a 48 V Li-Ion and 12 V lead-acid battery. However, most of these existing solutions do not provide redundancy for same battery voltages, like two 12 V, 24 V, or 48 V batteries. Up until now, that is.

Clearly there is a need for a bidirectional buck-boost dc-to-dc converter that can go between two 12 V batteries. Such a dc-to-dc converter could be used to charge either battery and allow both batteries to supply current to the same load. Furthermore, if one of these batteries should fail, that failure needs to be detected and isolated from the other battery, so that the other battery continues to provide power to the load without any disruption. The recently released LT8708 bidirectional dc-to-dc controller from Analog Devices solves this critical function of allowing two batteries with the same voltage to be hooked up by utilizing the LT8708 controller.
A Single Bidirectional IC Solution

The LT8708 is a 98% efficient bidirectional buck-boost switching regulator controller that can operate between two batteries that have the same voltage, which is ideal for redundancy in self-driving cars. It can operate from an input voltage that can be above, below, or equal to the output voltage, making it well-suited for two 12 V, 24 V, or 48 V batteries commonly found in electric and hybrid vehicles. The LT8708 operates between two batteries and prevents system shutdown should one of the batteries fail. This device can also be used in 48 V/12 V and 48 V/24 V dual battery systems.

The LT8708 uses a single inductor and operates over an input voltage range from 2.8 V to 80 V while producing an output voltage from 1.3 V to 80 V, delivering up to several kilowatts of power depending on the choice of external components and number of phases. It simplifies bidirectional power conversion in battery/capacitor backup systems that need regulation of VOUT, VIN, and/or IOUT, IIN, both in the forward or reverse direction. This device’s six independent forms of regulation allow it to be used in numerous applications.

The LT8708-1 is used in parallel with the LT8708 to add power and phases. The LT8708-1 always operates as a slave to the master LT8708, can be clocked out-of-phase, and has the capability to deliver as much power as the master. Up to 12 slaves can be connected to a single master, proportionally increasing the power and current capabilities of the system.

Forward and reverse current can be monitored and limited for the input and output sides of the converter. All four current limits (forward input, reverse input, forward output, and reverse output) can be set independently using four resistors. In combination with the direction (DIR) pin, the chip can be configured to process power from VIN to VOUT or from VOUT to VIN, ideal for automotive, solar, telecom, and battery-powered systems.

The LT8708 is available in a 5 mm × 8 mm, 40-lead QFN package. Three temperature grades are available, with operation from –40°C to +125°C for the extended and industrial grades and a high temperature automotive range of –40°C to +150°C. Figure 1 shows a simplified LT8708 block diagram.

Figure 1. LT8708 simplified bidirectional dual 12 V battery application schematic.

Complete Solution
The block diagram in Figure 2 shows the other parts required to complete the circuit for dual battery redundancy in an automotive application. As shown, the LT8708 works with two LT8708-1 parts to form a 3-phase solution design that can deliver up to 60 A in either direction. Additional LT8708-1 devices can be added for higher power applications up to and exceeding 12 phases. The AD8417 is a bidirectional current sense amplifier that senses the current flowing into and out of the batteries. And when this current exceeds a preset value, the LTC7001 high-side NMOS static switch driver opens the back-to-back MOSFETs to isolate either battery from the circuit.

Figure 2. A dual battery redundancy block diagram for a complete solution.

The LTC6810-2 monitors and controls the Li-Ion battery. It accurately measures the battery cells with a total measurement error of less than 1.8 mV. Connecting multiple LTC6810-2 devices in parallel to the host processor will create additional redundancy for monitoring other voltages within the circuit. The LTC6810-2 has an isoSPI™ interface for high speed, RF immune, long distance communications, and it supports bidirectional operation. The device also includes passive balancing with PWM duty cycle control for each cell and the ability to perform redundant cell measurements.

Control Overview
The LT8708 provides an output voltage that can be above, below, or equal to the input voltage. It also provides bidirectional current monitoring and regulation capabilities at both the input and the output. The ADI proprietary control architecture employs an inductor current-sensing resistor in buck, boost, or buck-boost regions of operation. The inductor current is controlled by the voltage on the VC pin, which is the combined output of six internal error amplifiers, EA1 to EA6. These amplifiers can be used to limit or regulate their respective voltages or currents as shown in Table 1.

Table 1. Error Amplifiers (EA1 to EA6)

The VC voltage typically has a min-max range of about 1.2 V. The maximum VC voltage commands the most positive inductor current and, thus, commands the most power flow from VIN to VOUT. The minimum VC voltage commands the most negative inductor current and, thus, commands the most power flow from VOUT to VIN.
In a simple example of VOUT regulation, the FBOUT pin receives the VOUT voltage feedback signal, which is compared to the internal reference voltage using EA4. Low VOUT voltage raises VC and, thus, more current flows into VOUT. Conversely, higher VOUT reduces VC, thus, reducing the current into VOUT or even drawing current and power from VOUT.

As previously mentioned, the LT8708 also provides bidirectional current regulation capabilities at both the input and the output. The VOUT current can be regulated or limited in the forward and reverse directions (EA6 and EA2, respectively). The VIN current can also be regulated or limited in the forward direction and reverse directions (EA5 and EA1, respectively).

In a common application, VOUT might be regulated using EA4, while the remaining error amplifiers are monitoring for excessive input or output current, or an input undervoltage condition. In other applications, such as a battery backup system, a battery connected to VOUT might be charged with constant current (EA6) to a maximum voltage (EA4) and can also be reversed, at times, to supply power back to VIN using the other error amplifiers to regulate VIN and limit the maximum current. See the LT8708 data sheet for additional information on this subject.

Conclusion
The LT8708-1 brings a new level of performance, control, and simplification to same voltage dual-battery dc-to-dc automotive systems. Whether using it for energy transfer between two power sources for redundancy, or for backup power in mission critical applications, the LT8708 allows users the ability to operate from two batteries or supercapacitors that have the same voltage. This capability allows automotive systems engineers to help pave the way for new advancements in automotive electronics, enabling cars to be safer and more efficient.

Bruce Haug [bruce.haug@analog.com] received his B.S.E.E. from San Jose State University in 1980. He joined Linear Technology (now a part of Analog Devices) as a product marketing engineer in April 2006. Bruce’s past experience includes stints at Cherokee International, Digital Power, and Ford Aerospace. He is an avid sports participant.

 

By Bruce Haug – ADI

> Read More

Renesas extends Bluetooth 5.0 security to RA 32-bit microcontrollers

Bluetooth 5.0 connectivity has been extended to the RA family of 32-bit microcontrollers by Renesas Electronics, with the introduction of the RA4W1, with an Arm Cortex-M core.

In addition to the 8MHz, 32-bit Arm Cortex-M4 core, it has an integrated Bluetooth 5.0 low energy radio and is delivered in a 56-pin QFN package. The RA4W1 microcontroller and Flexible Software Package (FSP) enables engineers to immediately begin development with Arm ecosystem software and hardware building blocks, says Renesas. FSP features FreeRTOS and middleware for device-to-cloud development. Renesas also points out that options can be replaced and expanded with any other RTOS or middleware.

The RA4W1 microcontroller allows embedded designers to develop safe and secure IoT endpoint devices for industry 4.0, building automation, metering, healthcare, consumer wearable and home appliance applications. It is intended for engineers developing IoT edge devices for wireless sensor networks, IoT hubs, an add-on to gateways and an aggregator to IoT cloud applications.

Sakae Ito, vice president of IoT Platform Business Division at Renesas, said that customers can use the on-chip features, such as Renesas’ Secure Crypto Engine. This feature supports customers with symmetric encryption and decryption, hash functions, true random number generation (TRNG), and advanced key handling with key generation and microcontroller-unique key wrapping for strong key management for IoT security. It also has what is claimed to be best-in-class output power consumption and sensitivity for secure, longer range applications.

The Arm Cortex M4 core and Bluetooth 5.0 core are housed in a 7.0 x 7.0mm 56-pin QFN. The single-chip RA4W1 48MHz microcontroller features 512 kbyte flash memory, 96 kbyte SRAM and connectivity such as USB, CAN and Renesas’ HMI capacitive touch technology.

Bluetooth 5.0 support includes 2 Mbits per second data throughput, all advertising extension functions with maximum advertising length (1,650 byte), periodic advertisements and channel selection algorithm #2 for applications requiring large amounts of traffic. The RA4W1 also offers low peak power consumption at 3.3mA during receiving and 4.5mA (at 0dBm) while transmitting. Renesas claims its sensitivity of -105dBm in 125 kbits per second mode is an industry best and is achieved without additional loss from external components.

Renesas provides several API functions that conform to all standard profiles, including a heart rate profile (HRP), an environment sensing profile (ESP) and an automation I/O profile (AIOP), to allow users to quickly start and speed up prototype development and evaluation.

Renesas’ Smart Configurator GUI generates Bluetooth code and microcontroller peripheral function driver code as well as pin settings for the e2 Studio integrated development environment (IDE). The Renesas QE tool for Bluetooth LE generates programs for custom profiles and embeds them in user application programs to support application program development. The Bluetooth Trial Tool Suite GUI allows users to perform initial wireless characteristics evaluations and Bluetooth functional verification. Users can typically have the RA4W1 evaluation board up and running with the downloadable smartphone applications demo in less than 30 minutes, says Renesas.

Integrating a high-precision, low-speed on-chip oscillator, an RF oscillator adjustment circuit and on-chip matching circuit for easy antenna connection reduces both bills of materials costs and circuit board area.

http://www.renesas.com

> Read More

Bluetooth beacons help hospitals track equipment

Keeping track – in real time – of medical equipment assets such as ventilators and defibrillators has never been more vital. Sixgill has developed Sense Hospital Asset Orchestration to track portable equipment to save time when it needs to be delivered quickly. The Bluetooth Low Energy (LE) AC plug-in wireless hub and ‘stick on’ beacon asset tracking solution uses Nordic Semiconductor’s nRF52832 SoC.

It tracks the location of assets within rooms and hallways using a technique based on Bluetooth LE beacon received signal strength indication (RSSI). All collated data is made available to hospital staff on a Sixgill-developed, cloud-based control panel. This graphically displays all tracked assets with colour-coded circles to show various status alerts (e.g. red to show assets that have been recently moved).

Sixgill says the rapid installation speed of its tracker is due to the simplicity of the drill- and screw-free design. This comprises two parts. First is AC plug-in wireless hubs based on a pass-through socket design. This is plugged into a single mains power socket in each room or hallway where asset tracking is required. Each one can cover a space of around 7.6 x 7.6m or 58m2 (25 x 25 feet or 625 feet2). The mains plugs have a Nordic nRF52832 installed to look and listen for Bluetooth LE beacons, and Wi-Fi to communicate to the cloud.

The stick-on Bluetooth LE beacons are attached to any asset the hospital would like to track. The nRF52832 SoC’s low power consumption means each beacon does not need to be recharged once installed. Its battery will last three to five years depending on the duty cycle. The Sense solution is scalable to support an unlimited number of Bluetooth LE beacons.

“Now a hospital is able to capture all asset information, transmit data and alerts as needed to appropriate staff, and reduce if not eliminate errors and delays when delivering critical assets to where they are needed,” says Joan Silver, VP of product marketing at Sixgill. “By collecting meaningful data and analysing it over time hospitals are also able to gain insights that optimise their operational and planning efficiencies. Our solution even supports [artificial intelligence] AI and machine learning to continuously improve a hospital’s understanding of its portable asset utilisation patterns to enable prediction of needs during both normal operations and emergency surges.

“Wireless ultra-low power consumption removes customer objections to extensive new wiring or incessant battery maintenance,” added Silver.

http://www.sixgill.com

http://www.nordicsemi.com

> Read More

Microcontroller enables real-time control for smart cities, says Microchip

Core independent peripherals, advanced analogue and on-chip communications are integrated in the latest AVR microcontrollers from Microchip. The higher-performance microcontrollers are required for better real-time control as well as to enable enhanced human machine interface (HMI) applications, explains Microchip. The AVR DA family of microcontrollers is the company’s first functional safety-ready AVR microcontroller family with Peripheral Touch Controller (PTC).

The family of microcontrollers meets new demand across multiple industries with advanced analogue and core independent peripherals and more capacitive touch channels over existing devices, said Greg Robinson, associate vice president of marketing, 8-bit microcontroller business unit. Target applications are the connected home security, building automation and sensor systems to automotive and industrial automation.

Microchip’s Functional Safety Ready designation covers devices that incorporate the latest safety features and are supported by safety manuals, failure modes, effects, and diagnostic analysis (FMEDA) reports, and in some cases, diagnostic software. This reduces the time and cost of certifying safety end applications. The AVR DA microcontroller family includes several integrated safety functions to ensure robust operation to ensure a sufficient supply voltage such as power-on reset, brown-out detector and voltage-level monitor. The cyclic redundancy check (CRC) scan ensures the application code in the flash memory is valid. By ensuring code integrity, unintended and potentially unsafe behaviour of the application can be avoided.

The AVR DA family of microcontrollers enable CPU speeds of 24 MHz over the full supply voltage range, memory density of up to 128 kbyte flash, 16 kbyte SRAM and 512 bytes of EEPROM, 12-bit differential ADC, 10-bit DAC, analogue comparators and zero cross detectors.

The PTC enables capacitive touch interface designs supporting buttons, sliders, wheels, touchpads, smaller touch screens as well as gesture controls used in a wide range of consumer and industrial products and vehicles. The AVR DA family supports up to 46 self-capacitance and 529 mutual capacitive touch channels and features the latest generation PTC with Driven Shield+ and boost mode technologies to enhance noise immunity, water tolerance, touch sensitivity and response time, says Microchip.

For embedded real-time control systems, the integrated event system enables inter-peripheral communication without involving the CPU. Events are latency-free and never lost, for predictable, reliable and safe designs. By reducing the time the CPU needs be active, the overall power consumption of the application is reduced.

The configurable custom logic peripheral enables the set-up of logical functions internally, eliminating the need for external components, reducing board space and bill of material costs. With the advanced analogue features like the 12-bit differential ADC, the AVR DA family of microcontrollers can measure small amplitude signals in noisy environments, making them well suited for sensor node applications in harsh environments.

According to Microchip, the high memory density and SRAM-to-flash ratio make the microcontrollers attractive for both wireless and wired connected sensors nodes, as well as other stack-intensive applications.

Software support includes Microchip’s MPLAB X, MPLAB Xpress and Atmel Studio, code configuration tools including MCC and START, and compilers including GCC, XC8 and the IAR Embedded Workbench. A functional safety certified version of the XC8 compiler is available via Microchip’s Functional Safety Ready program. Hardware support is included in debuggers/programmers including MPLAB PICkit 4, MPLAB SNAP, Atmel ICE and the AVR128DA48 Curiosity Nano evaluation kit.

The AVR DA family of microcontrollers is available in volume production now.

http://www.microchip.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration