New EnOcean bluetooth module with doubled radio transmission power

With the new EnOcean PTM 216B module, customers can now address even more applications thanks to the use of the latest generation kinetic harvester ECO 260. The combination of the new harvester with the latest generation system design, allows for more than double the radio transmission power compared to its highly successful predecessor, the PTM 215B. This significantly increases the usable communication distance. This enhancement enables control of high-bay lighting, expanding the application areas to include warehouses and architectural projects with high ceilings. PTM 216B brings great flexibility in terms of installation locations and repositioning capabilities. In modern offices with adaptable layouts and flexible walls, the elimination of wiring significantly streamlines the installation process.

EnOcean devices such as PTM 216B can be quickly configured using Near Field Communication (NFC) technology. NFC is a short-range wireless technology that enables communication between devices in close proximity, typically within a few centimetres. It allows two devices equipped with NFC capabilities to establish a connection by bringing them close together, triggering the exchange of data. A common use is for making contactless payments.

The integration of EnOcean devices into networks via NFC provides a simple, quick and reliable way of setting up lighting installations.

Energy-harvesting switches based on the PTM 216B and other EnOcean switch modules are available in a wide range of designs from multiple switch manufacturers around the world, all of which blend well into any environment. The unique combination of these features makes PTM 216B an ideal for lighting control and building automation use cases. Official switch OEM partners make use of the “Battery-free by EnOcean” brand to make sure it contains genuine technology from EnOcean for real maintenance-free operation in the field.

This new module will be featured at the EnOcean booth at Light + Building in Frankfurt from March 3-8, 2024. At the show, EnOcean will focus on sustainable IoT for green and healthy buildings. New energy harvesting products as well as IoT solutions and smart servers that help analyse the collected data and make informed decisions to optimise building performance will be at the heart of the EnOcean show presence.

https://www.enocean.com

> Read More

Renesas debuts its lowest power consumption, dual-core bluetooth low energy SoC with integrated flash

Renesas has introduced the DA14592 Bluetooth Low Energy (LE) System-on-Chip (SoC) representing Renesas’ lowest power consumption and smallest, multi-core (Cortex-M33, Cortex-M0+), Bluetooth LE device. By carefully balancing tradeoffs between on-chip memory (RAM/ROM/Flash) and SoC die size (for cost), the DA14592 is very well suited to a broad range of applications including connected medical, asset tracking, human interface devices, metering, PoS readers and ‘crowd-sourced location’ (CSL) tracking.

The DA14592 utilises a new low-power mode to offer 2.3mA radio transmit current at 0dBm and 1.2mA radio receive current. Additionally, it supports an ultra-low hibernation current of only 90nA, extending shelf-life for end-products shipped with ‘battery connected’, and ultra-low active current at 34µA/MHz for products requiring significant application processing.

Operating from only a system clock and its accurate on-chip RCX, this device removes the need for a sleep mode crystal in the majority of applications. Its reduced eBOM, coupled with the DA14592’s small package (offered in WLCSP: 3.32mm x 2.48mm and FCQFN: 5.1mm x 4.3mm) also presents designers with an small solution footprint. The DA14592 also includes a high-precision, sigma-delta ADC, up to 32 GPIOs and unlike other SoCs in its class, it offers a QSPI supporting external memory (Flash or RAM) expansion for applications requiring extra memory.

Renesas has integrated all external components required to implement a Bluetooth LE solution into the DA14592MOD module. It offers customers the fastest time-to-market and reduced overall project cost. Emphasis has been placed in the design of this module to ensure maximum design flexibility by comprehensively routing the DA14592’s functions to the outside of the module and using castellated pins for easy/low-cost module attachment during development.

“The DA14592 and DA14592MOD extend our leadership in Bluetooth LE SoCs with our trademark low power consumption and best-in-class eBOMs,” said Davin Lee, Sr. Vice President and General Manager of the Analog and Connectivity Product Group for Renesas. “In addition, we have listened to our customers and continue to expand our product support by offering reference designs for applications such as crowd-sourced locationing, helping our customers to more easily differentiate their products, delivering premium value while maintaining lowest costs.”

https://www.renesas.com/DA14592.

> Read More

Renesas launches RZ/G3S 64-bit microprocessor with enhanced peripherals for IoT Edge and gateway devices

As the latest addition to Renesas’ RZ/G Series MPU, the RZ/G3S is designed to meet the demanding requirements of modern IoT devices, offering power consumption as low as 10µW (microwatts) in standby mode and fast startup for the Linux operating system. The new MPU comes with a PCI Express interface that enables high-speed connectivity with 5G wireless modules. Additionally, the device boasts enhanced security features such as tamper detection to ensure data security. These features make the device ideal for IoT applications such as home gateways, smart meters, and tracking devices.

“Renesas’ RZ/G has seen a steady increase in adoption in the global industrial human machine interface market,” said Daryl Khoo, Vice President of Embedded Processing 1st Division at Renesas. “The RZ/G3S represents the next generation products that will extend our reach to the rapidly growing 5G IoT and Gigabit Wi-Fi 7 gateway markets. Renesas has been aggressively expanding our connectivity portfolio in these markets through strategic acquisitions to offer advanced connectivity solutions that are power efficient at the system level and enhance data utilisation.”

The RZ/G3S employs an Arm Cortex-A55 core as the main CPU with a maximum operating frequency of 1.1 GHz and two Cortex-M33 cores as sub-CPUs operating at 250 MHz. Users can distribute the MPU’s workloads to sub-CPUs, allowing the device to efficiently handle tasks such as receiving data from sensors, controlling system functions and managing power systems. This reduces the workload on the main CPU, resulting in fewer components, lower costs and a smaller system size.

The device’s newly added power management system is designed to reduce power consumption to extremely low levels — less than 10 µW. The MPU also supports the DDR self-refresh function which allows to retain DRAM data, while also enabling fast Linux startup. The fast startup allows IoT devices, which frequently operate intermittently, to save power and significantly extend the runtime of battery-powered devices. Moreover, the device offers a standby mode that can maintain sub-CPU operation at a power level as low as 40 mW, offering the flexibility to optimise power consumption based on the specific operating requirements of each application.

The RZ/G3S is equipped with a wide range of peripheral functions including Gigabit Ethernet, CAN, USB, as well as the PCI Express interface. By connecting with 5G communication modules, the device can achieve high-speed communication at Gigahertz levels.

Similar to other RZ/G devices, the RZ/G3S features an ECC (Error Correction Code) function in both internal memory and external DDR interface to maintain data integrity. The Verified Linux Package (VLP) based on the industrial-grade Linux software (Civil Infrastructure Platform™ (CIP) Linux) is available for the RZ/G3S. With VLP, developers receive over 10 years of maintenance support, ensuring long-term protection against security threats. The device also provides tamper detection along with secure boot, secure debug and more. RZ/G series products are already Level 2 PSA Certified from Arm and Renesas has plans to include the RZ/G3S in the future.

Renesas has combined the new RZ/G3S MPU with optimised power management ICs and clock products to develop the “Single Board Computer Gateway”. The RZ/G3S’s rich set of interfaces allows the device to connect with various sensors via USB, CAN, RS485, UART, and I2C. It also offers high performance wireless connectivity options to build a robust network for home automation or IoT applications. Its multicore design allows for real-time processing of data while being power efficient with its advanced sleep mode functions. The Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimised, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly. They can be found at renesas.com/win.

https://www.renesas.com/rzg3s

> Read More

XENSIV stray field robust linear TMR sensor enables high-precision length measurements

The sensor comes in a wafer-level package and is well suited for linear and angular incremental position detection. The device is qualified for industrial and consumer applications according to the JEDEC standard JESD47K and can be used as a replacement for optical encoders and resolvers. It is well suited for positioning lenses for zoom and focus adjustment in cameras.

The TLI5590 is a low field sensor with Infineon TMR technology which was developed for high-volume sensor systems. As a result, the sensor offers ultra-high sensitivity, low jitter, and low power consumption. Compared to linear Hall sensors, TMR sensors offer better linearity, lower noise, and lower hysteresis. The high signal-to-noise ratio and the lower power enable cost-effective magnetic designs with lower battery consumption.

As a result, the new sensor enables accurate detection with rapidly changing directions. The TLI5590 consists of two TMR Wheatstone bridges, where the TMR resistance depends on the direction and strength of the external magnetic field. In combination with a multipole magnet, each bridge provides a differential output signal, i.e., sine and cosine signals. These can be further processed for relative position measurement.

The sensor is housed in an extreme small 6-ball wafer level package SG-WFWLB-6-3. Due to the higher integration density, the sensor size has been reduced, which supports miniaturisation and position detection in microsystems. The TLI5590-A6W enables fine measurement with a very high accuracy of better than 10 µm, which is achieved by using a suitable linear or rotary magnetic encoder. With an extended operating temperature range of up to +125°C, the sensor can be used flexibly in various industrial and consumer applications. In addition, its high temperature stability makes it the perfect choice for use in harsh environments.

https://www.infineon.com/linear-sensors/tli5590-a6w

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration