Hands-free ECU detection assists autonomous driving

To support autonomous driving systems by distinguishing between variations in a driver’s grip on the steering wheel, an electronic control unit (ECU) developed by Alps Alpine will contribute to safe, comfortable mobility, says the company.

In the field of autonomous driving, there is growing deployment of systems that enable a vehicle, under certain conditions, to automatically follow the car in front while keeping to the lane, reports Alps Alpine.

Such vehicles need to be able to detect and assess a driver’s driving status to allow safe and smooth switching between automated and manual driving. One aspect is to determine the driver’s grip on the steering wheel to enable safe switching between driver-controlled and system-controlled modes. Determining the right time to switch between autonomous driving assistance and manual driving requires constant monitoring of the vehicle’s drive status and the driver’s driving posture to ensure safety. If autonomous driving assistance is not appropriate, the driver needs to be quickly warned that the assistance is to be disengaged and will need to immediately revert to manual driving.

Capacitive sensing is the dominant technology used for steering wheel touch detection due to its cost and functional performance. The ECU uses data obtained via a special-purpose capacitive sensor, wrapped around the steering wheel, to determine if the driver is touching it and conveys the assessment to an advanced driver assistance system (ADAS). Existing hands-off detection systems are mono-zone set ups, with a single electrode, Alps Alpine has developed a multi-zone configuration with four electrodes. Dividing the steering wheel and grip patterns into smaller sections enables efficient system switching and enhanced touch assessment reliability, says the company. This allows a more detailed assessment of driving status than a basic touching/not touching determination reached using an existing single-electrode sensor, Alps explains.

The ECU has been designed for use with a special-purpose steering wheel capacitive sensor to maintain resistance to environmental factors such as temperature, humidity and electromagnetic noise.

Alps Alpine has also developed an original capacitive control ASIC with improved durability and versatility for conformance to strict automotive standards.

Varying conditions may lead to a variance in the data obtained via the capacitive sensor. To accommodate the separate circumstances, Alps Alpine can supply an originally developed algorithm to accommodate the parameter changes.

Reliability is enhanced by an original failure determination feature and the ECU sensor conforms to ISO 26262, the international standard on the functional safety of electrical and electronic systems in automobiles.

Alps Alpine will also put forward product proposals, representing examples of applied capacitive technology, for a wide range of human-machine interfaces (HMI) both inside and outside the vehicle cabin, not just hands-off detection.

The ECU is in mass production. It measures 40 x 45 x 12mm and uses a LIN 2.1 or LIN 2.2 interface. It operates at 8.0 to 16V and up to 100mA.

http://www.alpsalpine.com

> Read More

M.2 cards let i.MX users try wireless connectivity options

A set of Wi-Fi 5, Wi-Fi 6, and Bluetooth expansion cards which plug into NXP Semiconductors’ i.MX processor evaluation kits allow users to try connectivity options, says u-blox. The cards conform to the M.2 form factor and integrate u-blox modules powered by wireless SoCs from NXP.

The cards use NXP’s integrated 88W8987 and 88Q9098 Wi-Fi 6 + Bluetooth chipsets and easily plug into the M.2 sockets to evaluate i.MX and development kits are claimed to make it significantly easier for developers to explore the many wireless connectivity possibilities enabled by their modules.

u-blox has launched two wireless connectivity cards based on its JODY modules. The cards are built to the M.2 Type 2230 Key E form factor, for which sockets are provided on the latest range of NXP i.MX evaluation boards.

The M2-JODY-W3 card comprises a u-blox JODY-W3 Wi-Fi 6 and Bluetooth 5.1 module. The module’s NXP 88Q9098 chipset supports IEEE 802.11ax and dual mode Bluetooth 5.1. It runs concurrent dual band Wi-Fi 2.4 GHz and 5 GHz networks using dual MACs, and 2×2 MIMO antenna set-up in each band.

Bluetooth support in the M2-JODY-W3 includes dual-mode Bluetooth 5.1 Classic and LE, as well as the standard’s long-range operation option. The M2-JODY-M3 card supports simultaneous operation of Wi-Fi and Bluetooth. Its Wi-Fi functionality includes simultaneous access point, station, or Wi-Fi Direct modes.

The M2-JODY-W2 card features a u-blox JODY-W2 Wi-Fi 5 and Bluetooth 5 module, which uses the NXP 88W8987 chipset to support IEEE 802.11ac and Bluetooth/Bluetooth Low Energy 5. The card supports dual-band Wi-Fi to the 802.11a/b/g/n/ac standards.

The card also supports dual-mode Bluetooth 5 operation and is capable of dual port simultaneous operation of Wi-Fi and Bluetooth, and its Wi-Fi functionality also includes simultaneous access point, station, or Wi-Fi direct modes.

The cards can be used as a way of evaluating wireless connectivity options in the context of both NXP i.MX evaluation kits and embedded systems boards built by NXP partners. The cards can be used in industrial automation, vehicle navigation and telematics, in-vehicle infotainment and hands-free audio, remote diagnostics and patient monitoring, security cameras, payment terminals, and other applications requiring high data rates, says u-blox.

The M2-JODY-W3 and M2-JODY-W2 cards can be used with legacy evaluation boards that do not feature an M.2 socket as a convenient microSD-to-M.2 adapter that connects to a standard microSD socket, or a microSD-to-SD adapter for boards with a standard SD socket.

http://www.u-blox.com

> Read More

Automotive radar sensors simulate laterally moving objects

Driving scenarios for testing radar based advanced driver assistance systems (ADAS) and radar sensors used in autonomous cars are simulated entirely over the air by the Rohde & Schwarz RTS radar test system. The RTS system consists of R&S AREG800A automotive radar echo generator (back end) and the R&S QAT100 antenna array (front end).

Currently, laterally moving objects are simulated by mechanically moving antennae. The R&S RTS replaces the mechanical movement by electronically switching individual antennae in the front end on and off. Even objects moving laterally to the car at very high speed can be simulated reliably and reproducibly, says Rohde & Schwarz. The R&S RTS is able to simulate the radial velocity (Doppler shift) and the size (radar cross section) of objects at user configurable ranges, including very small ranges, adds Rohde & Schwarz. Objects can be represented by cascading multiple R&S AREG800A back ends.

The R&S RTS moves tests currently performed on the road into the lab. This allows early error detection and a significant reduction in costs, claims Rohde & Schwarz.

The number of radar sensors in vehicles is growing, with long range radars required by NCAP (New Car Assessment Program), and an increasing number of corner radars are installed that can also monitor objects moving laterally. The latest generation of radar sensors have integrated RF antennae and signal processors for object recognition on the same chip. That is why the objects to be recognised need to be simulated over the air in radar sensor tests, argues Rohde & Schwarz.

The R&S RTS – consisting of the R&S AREG800A back end and the R&S QAT100 antenna array front end – is a target simulator that generates dynamic radar echoes that can be used at all stages of automobile radar sensor testing – from pre-development through hardware-in-the-loop lab tests to validation of ADAS/autonomous functions integrated in the vehicle.

The back end can simulate a large number of independent artificial objects and dynamically vary their range, size (radar cross section) and radial velocity. With an instantaneous bandwidth of 4GHz between 76 and 81GHz, it covers the typical frequency range of current and future automotive radar sensors.

The front end uses up to 192 independently switchable antennae to simulate objects moving laterally to the car’s direction of movement, providing very fine resolution, high switching speed and high repeatability. Electronic switching of the antennae does not cause any wear to RF cables and other moving parts, as is otherwise encountered with mechanical antenna motion used in traditional test systems. An optional transmit array makes it possible to simulate two objects very close together and moving laterally to the car. The small patch antennae and the absorber-lined surface provide a low-reflection RF front end with a very small radar cross section. This reduces the sensor’s noise floor and suppresses close range targets and potential multi-path reflections. The antenna spacing of just 3.7mm delivers very fine angular resolution. Multiple front ends can be combined to cover larger fields of view of radar sensors. An angular resolution of less than 0.5 degrees is possible.

From simple scenarios such as automatic emergency breaking, the R&S RTS is modular and can be extended to cover very complex scenarios with multiple radar sensors. Any number of R&S QAT100 front ends and R&S AREG800A back ends can be combined. One of the back ends synchronises all the components installed in the set up. A graphical user interface (GUI) with a touchscreen makes it easy to configure the test set up.

For test automation with industry-standard tools, the R&S RTS comes with a hardware-in-the-loop (HiL) interface conforming to the ASAM Open Simulation Interface specification.

http://www.press.rohde-schwarz.com

> Read More

IR dynamic gesture sensor keeps driver’s eyes on the road

Hand gestures can be recognised by the MAX25405 next-generation optical sensor to ensure that a driver’s eyes remain on the road. The optical sensor recognises a variety of gestures in a quarter of the size and at 10x lower cost than camera-based time of flight systems in automotive, industrial and consumer applications, says Maxim Integrated.

The MAX25405 detects a wider proximity of movement and doubles the sensing range to 40cm compared to earlier generations, in a form factor that is a quarter the size of camera-based systems in automotive, industrial and consumer applications. According to Maxim, these enhancements offer an alternative to voice communications, enabling drivers to focus on the road.

The MAX25405 has integrated optics, a 6 x 10 infra red sensor array and a glass lens which increases sensitivity and improves the signal to noise ratio. The improved performance doubles the proximity and distance of sensing applications so that passengers in the front and rear seats can be also operate entertainment displays, for example, with gestures. There is a high level of integration compared to competitive ToF solutions that require three chips and a complicated microprocessor.

The MAX25405’s small 20-pin, 4.0 x 4.0 x 1.35mm quad flat no-lead (QFN) package together with four discrete LEDs measures up to 75 per cent smaller than ToF camera-based solutions.

The MAX25405 recognizes nine gestures, including swipe, rotation, air-click, linger to click and 3 x 2 proximity zones with minimal lag time. It is affordable for use in multi-range automotive, consumer and industrial applications, including touch-free smart home hubs and thermostats.

The MAX25405 gesture sensor and associated MAX25405EVKIT# evaluation kit are available now.

Maxim Integrated has a broad portfolio of semiconductors, tools and support, to delivers analogue solutions including efficient power, precision measurement, reliable connectivity and robust protection along with intelligent processing for automotive, communications, consumer, data centre, healthcare, industrial and IoT applications.

http://www.maximintegrated.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration