R&S verifies NXP’s next generation automotive radar sensor reference design for extremely short object distances

The radar target simulator R&S RTS has been used to verify the performance of NXP® Semiconductors’ next-generation radar sensor reference design. This collaboration enables the automotive industry to take another step forward in the development of automotive radar, the principal technology that enables advanced driver assistance systems (ADAS) and autonomous driving features.

Engineers from both companies conducted a comprehensive series of tests to verify the new sensor reference design which is based on a NXP’s 28 nm RFCMOS radar one-chip SoC (SAF85xx). The R&S RTS radar test system combines the R&S AREG800 automotive radar echo generator with the R&S QAT100 antenna mmW frontend, offering unique short-distance object simulation capabilities as well as superior RF performance and advanced signal processing with many advanced functions. This enables realistic tests of next generation automotive radar applications and brings automotive industry’s vision of fully autonomous driving one step closer.

NXP’s next generation automotive radar sensor reference design is enabled by the industry’s first 28 nm RFCMOS radar one-chip SoC family leveraging the R&S RTS radar test system. The radar sensor reference design can be used for short, medium and long-range radar applications to serve challenging NCAP (NCAP: New Car Assessment Program) safety requirements as well as comfort functions like highway pilot or urban pilot for the fast-growing segment of L2+ and L3 vehicles.

The R&S RTS is the only test system suitable for complete characterisation of radar sensors and radar echo generation with object distances down to the airgap value of the radar under test. It combines the R&S AREG800A automotive radar echo generator as a backend and the R&S QAT100 antenna array or the R&S AREG8-81S as a frontend. The technically superior test solution is suitable for the whole automotive radar lifecycle including development lab, hardware-in-the-loop (HIL), vehicle-in-the-loop (VIL), validation and production application requirements. The solution is also fully scalable and can emulate the most complex traffic scenarios for advanced driver assistance systems.

Adi Baumann, Senior Director ADAS R&D, at NXP Semiconductors says: “We have been collaborating closely and successfully with Rohde & Schwarz for many years on the verification of our automotive radar sensor reference designs. Rohde & Schwarz’ cutting-edge automotive radar test systems allows us high-quality and highly efficient validation of our automotive radar products and proves outstanding performance of our radar one-chip. The level of experience, quality and support that Rohde & Schwarz provides to NXP is making a difference.”

Gerald Tietscher, Vice President Signal Generators, Power Supplies and Meters from Rohde & Schwarz says: “We are grateful for the collaboration with NXP to accelerate the deployment of advanced automotive radar sensors based on 28 nm automotive radar chips. They serve ever more challenging NCAP safety requirements and will help enable new safety applications. Our experience in automotive radar testing allows us to provide a best-in-class test solution for this radar sensor design based on the industry’s first 28 nm RFCMOS one-chip radar SoC.”

NXP will present the latest developments for radar including the automotive radar sensor reference design at CES 2024 trade show in Las Vegas from January 9 to 12, 2024, at booth CP18.

https://www.rohde-schwarz.com/

> Read More

SemiQ unveils high-performance QSiC power modules in half-bridge packages

SemiQ has expanded its QSiC power modules portfolio with the introduction of a new series of 1200V silicon-carbide (SiC) power MOSFETs in half-bridge packages.

Engineered and tested to operate reliably in demanding environments, these new compact, high-performance modules enable high-power-density implementations while minimising dynamic and static losses. Featuring high breakdown voltage (>1400V), the new QSiC modules support high-temperature operation (Tj = 175°C) with low Rds(On) shift over the full temperature range. In addition, the modules exhibit industry-leading gate oxide stability and long gate oxide lifetime, avalanche unclamped inductive switching (UIS) ruggedness and long short-circuit withstand time.

With a solid foundation of high-performance ceramics, the new SiC modules are suitable for EV charging, on-board chargers (OBCs), DC-DC converters, E-compressors, fuel cell converters, medical power supplies, photovoltaic inverters, energy storage systems, solar and wind energy systems, data centre power supplies, UPS/PFC circuits, Vienna rectifiers, and other automotive and industrial applications.

To ensure that each module has a stable gate threshold voltage and high-quality gate oxide, SemiQ’s modules undergo gate burn-in testing at the wafer level. Besides the burn-in test, which helps to stabilise the extrinsic failure rate, stress tests such as gate stress, high-temperature reverse bias (HTRB) drain stress, and high humidity, high voltage, high temperature (H3TRB) allow achieving the required automotive and industrial grade quality levels. The devices also have extended short-circuit ratings. All modules have undergone testing exceeding 1350V.

https://semiq.com/

> Read More

Press-fit terminal power modules for a solder-free solution in high-volume manufacturing

The E-Mobility, sustainability and data centre markets require products that are conducive to high-volume manufacturing. To better automate the installation process, Press-Fit terminals are often used because they offer a solder-free solution to mount power modules to the PCB. Microchip Technology has announced its expansive portfolio of SP1F and SP3F power modules are now available with Press-Fit terminals for high-volume applications.

Solder-free Press-Fit power module terminals allow for automated or robotic installation, which simplifies and speeds up the assembly process to reduce manufacturing costs. The high accuracy of the terminal locations and the novel Press-Fit pin design in the SP1F and SP3F power modules enables high-reliability contact with the printed circuit card. Overall, a Press-Fit power module solution can save valuable time and production costs.

There are over 200 variants available in Microchip’s SP1F and SP3F power modules portfolio, with options to use mSiC technology or Si semiconductors and an array of topologies and ratings. The SP1F and SP3F are offered in voltage range of 600V-1700V and up to 280A.

With Press-Fit technology, the power module pins are not soldered to the PCB. Instead, the electrical connection is made by pressing the pins into properly sized PCB holes. A key advantage of a Press-Fit power module solution is it eliminates the need for wave soldering. This is especially important when the PCB is made to also include Surface-Mount Technology (SMT) components.

“Our power modules with Press-Fit terminals offer customers the flexibility to fully customise their design and are cost-effective power solutions for high-volume production,” said Leon Gross, vice president of Microchip’s discrete products group. “This type of plug-and-play power solution also provides a highly reliable mounting solution for automated or robotic assembly.”

The highly configurable SP1F and SP3F power modules are fully compliant with the Restriction of Hazardous Substances Directive (RoHS).

https://www.microchip.com

> Read More

ST introduces AI-enabled automotive inertial measurement unit for always-aware applications up to 125°C

ST’s ASM330LHHXG1 inertial measurement unit (IMU) for automotive applications combines in-sensor AI with enhanced low-power operation and 125°C operating temperature range for reliability in harsh environments.

ST’s new automotive IMU contains a 3-axis accelerometer and 3-axis gyroscope and draws less than 800µA with both sensors running, cutting the system power budget and encouraging use in always-aware applications. In-sensor AI leverages the built-in machine-learning core (MLC) and finite state machine (FSM), offloading the host processor and enabling low-latency, energy-efficient event detection and classification. The extended temperature range gives flexibility to deploy smart sensors containing the ASM330LHHXG1 in harsh locations including near engine components, in direct sunlight, or whenever on-board power dissipation might increase the temperature above standard operating levels.

With the integrated MLC and FSM, the ASM330LHHXG1 handles applications that need fast and deterministic response with minimal power demand. These include navigation assistance and telematics, theft prevention, impact detection, and motion-activated functions.

ST’s MEMS ecosystem helps accelerate evaluation, prototyping and development with the ASM330LHHXG1, leveraging Unico-GUI and AlgoBuilder tools and MEMS-sensor adapter boards (STEVAL-MKI243A). Also, engineers can find ready-to-use application examples at ST’s GitHub repository area. The MLC repository contains use cases such as tilt, towing, and vehicle-status detection. The FSM repository has further inspiration including motion/stationary detection and shake detection.

While the IMU has dual operating modes that let designers optimise the data-update rate and power consumption, the accelerometer and gyroscope maintain high stability over time and temperature. The accelerometer has a selectable full-scale range of ±2/±4/±8/±16g, while the gyroscope’s angular rate can be set to ±125, ±250, ±500, ±1000, ±2000, or ±4000 degrees per second.

The ASM330LHHXG1 is AEC-Q100 qualified and in production now. It is available in an over-molded 14-lead plastic land grid array (LGA) package.

For more information, please visit http://www.st.com/automotive-experience

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration