u-blox introduces PointPerfect Global, completing its GNSS correction service portfolio

u-blox has announced PointPerfect Global, the latest addition to its high-precision GNSS correction services. Designed for demanding applications such as precision agriculture, UAV-based mapping, and autonomous outdoor robotics, the new service provides sub-decimetre positioning accuracy worldwide – even in remote locations – via internet and L-band satellite broadcast.

Part of the expanding PointPerfect portfolio, PointPerfect Global completes the u-blox correction services offering—joining PointPerfect Live, the regional nRTK service for the most demanding applications, and PointPerfect Flex, the original PPP-RTK service optimised for wide-ranging and flexible IoT deployments. Together, the portfolio delivers scalable, high-performance positioning solutions that meet even the most demanding customer expectations.

PointPerfect Global delivers PPP-AR (Precise Point Positioning with Ambiguity Resolution) corrections via IP and satellite L-band, enabling convergence times under 2 minutes and <10 cm accuracy. It is optimised for products built on the X20 platform. The u-blox ZED-X20P all-band, high-precision GNSS receiver will be the first to support PointPerfect Global, integrating native L-band support and allowing reliable performance where cellular connectivity is unavailable.

With its broadcast-based global coverage, PointPerfect Global supports scalable deployment across continents without complex regional integration. It enables OEMs and solution providers to bring autonomous systems to market faster, reduce operational complexity, and streamline global logistics. Applications span agriculture, robotics, drones, industrial automation, and automotive, where consistent performance and minimal infrastructure dependency are critical.

Early access to PointPerfect Global will begin in late 2025 and general availability is expected in H1 2026.

https://www.u-blox.com

> Read More

NXP unveils third-generation imaging radar processors

NXP Semiconductors have unveiled its new S32R47 imaging radar processors in 16 nm FinFET technology, building on NXP’s proven expertise in the imaging radar space. The third generation of imaging radar processors delivers up to twice the processing power versus the previous generation, alongside improved system cost and power efficiency. In combination with NXP’s mmWave radar transceivers, power management and in-vehicle networking solutions, the S32R47 family meets functional safety ASIL ISO 26262 ASIL B(D) requirements and prepares the automotive industry for new levels of autonomous driving.

According to Yole Intelligence’s Status of the Radar Industry 2024 report, by 2029, approximately 40% of vehicles entering the road will be passenger cars with driving automation Level 2+(L2+)/ Level 3 (L3) as well as an increasing number of vehicles with Level 4 (L4). To serve the fast-growing autonomous driving market for SDVs, automotive OEMs and tier 1 suppliers need to improve radar performance as it is essential for safe, advanced autonomy features such as piloted driving or fully automated parking.

“The S32R47 can efficiently process three times, or more, antenna channels in real time than today’s production solutions. It enables improved imaging radar resolution, sensitivity and dynamic range – required by demanding autonomous driving use cases – while still meeting the stringent power and system cost targets set by OEMs for volume production,” said Meindert van den Beld, Senior Vice President & General Manager, Radar & ADAS.

Imaging radar leverages richer point cloud data for more detailed modelling of the environment. This is a key enabler for AI based perception systems which allow for assisted and autonomous driving in the most challenging environmental conditions, such as complex urban scenarios.

The S32R47 integrates a high-performance multi-core radar processing system, allowing denser point cloud output and enhanced algorithms that enable next-generation ADAS systems. This results in better separability of objects, improved detection reliability and more accurate classification of objects such as vulnerable road users or lost cargo.

The new solution delivers up to 2x processing performance in the radar MPU in a 38% smaller IC footprint. It also includes AI/ML support for features like enhanced Direction of Arrival (DoA) processing and object classification.

https://www.nxp.com

> Read More

XENSIV magnetic switches support functional safety in automotive applications

When developing applications for autonomous driving, compliance with the ISO 26262 standard is crucial – at both the system and sensor levels. To meet these demands, Infineon has introduced the XENSIV TLE4960x magnetic switch family. Developed in accordance with ISO 26262, the TLE4960x switches integrate diagnostic functions to support functional safety applications with requirements up to ASIL B. They are the only ASIL-B-compliant switches on the market that can address a wide range of automotive applications, including window regulators, sunroof actuators, and seat adjustment. In addition, the devices are AEC-Q100 compliant and qualified to Grade 0, ensuring robust performance in harsh environments.

The TLE4960x devices are designed to measure the magnetic field orthogonal to the printed circuit board in the Z-direction and feature an open-drain output for speed information. They also include integrated overcurrent and overtemperature protection. Housed in a standardised SOT23-3 SMD package, the sensors require only 1.6 mA and operate across an extended temperature range from -40°C to 175°C. Their temperature stability makes them ideal for harsh automotive environments.

https://www.infineon.com

> Read More

Infineon introduces new generation of IGBT and RC-IGBT devices

The market for electric vehicles continues to gather pace with a strong volume growth of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The share of electric vehicles produced is expected to see double-digit growth by 2030 with a share of around 45 percent compared to 20 percent in 2024. Infineon is responding to the growing demand for high-voltage automotive IGBT chips by launching a new generation of products. Among these offerings are the EDT3 (Electric Drive Train, 3 rd generation) chips, designed for 400 V and 800 V systems, and the RC-IGBT chips, tailored specifically for 800 V systems. These devices enhance the performance of electric drivetrain systems, making them particularly suitable for automotive applications.

The EDT3 and RC-IGBT bare dies have been engineered to deliver high-quality and reliable performance, empowering customers to create custom power modules. The new generation EDT3 represents a significant advancement over the EDT2, achieving up to 20 percent lower total losses at high loads while maintaining efficiency at low loads. This achievement is due to optimisations that minimise chip losses and increase the maximum junction temperature, balancing high-load performance and low-load efficiency. As a result, electric vehicles using EDT3 chips achieve an extended range and reduce energy consumption, providing a more sustainable and cost-effective driving experience.

The EDT3 chipsets, which are available in 750 V and 1200 V classes, deliver high output current, making them well-suited for main inverter applications in a diverse range of electric vehicles, including battery electric vehicles, plug-in hybrid electric vehicles, and range-extended electric vehicles (REEVs). There reduced chip size and optimised design facilitate the creation of smaller modules, consequently leading to lower overall system costs. Moreover, with a maximum virtual junction temperature of 185°C and a maximum collector-emitter voltage rating of up to 750 V and 1200 V, these devices are well-suited for high-performance applications, enabling automakers to design more efficient and reliable powertrains that can help extend driving range and reduce emissions.

The 1200 V RC-IGBT elevates performance by integrating IGBT and diode functions on a single die, delivering an even higher current density compared to separate IGBT and diode chipset solutions. This advancement translates into a system cost benefit, attributed to the increased current density, scalable chip size, and reduced assembly effort.

Infineon’s latest EDT3 IGBT chip technology is now integrated into the HybridPACK Drive G2 automotive power module, delivering enhanced performance and capabilities across the module portfolio. This module offers a power range of up to 250 kW within the 750 V and 1200 V classes, enhanced ease of use, and new features such as an integration option for next-generation phase current sensors and on-chip temperature sensing, contributing to system cost improvements.

All chip devices are offered with customised chip layouts, including on-chip temperature and current sensors. Additionally, metallisation options for sintering, soldering and bonding are available on request.

https://www.infineon.com

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration