Renesas introduces industry’s first general-purpose 32-bit RISC-V MCUs with internally developed CPU core

Renesas Electronics Corporation has announced the industry’s first general-purpose 32-bit RISC-V-based microcontrollers (MCUs) built with an internally developed CPU core. While many MCU providers have recently joined investment alliances to advance the development of RISC-V products, Renesas has already designed and tested a new RISC-V core independently, which is now implemented in a commercial product and available globally. The new, R9A02G021 group of MCUs provides embedded systems designers a clear path to developing a wide range of power-conscious, cost-sensitive applications based on the open-source instruction set architecture (ISA).

While most of today’s RISC-V solutions target specific applications, the R9A02G021 group MCUs are designed to serve multiple end markets, such as IoT sensors, consumer electronics, medical devices, small appliances and industrial systems. Similar to existing general-purpose MCUs, designers will have access to a full-scale development environment for the R9A02G021, provided by Renesas and its extensive network of toolchain partners. This will allow them to significantly reduce costs, engineering resources and development time.
The R9A02G021 RISC-V group offers ample performance with clock speeds up to 48MHz, while consuming extremely low power in standby at 0.3µA. It provides 128KB of fast flash memory, 16KB of SRAM memory and 4KB of flash memory for data storage. Designed to withstand harsh conditions, the MCUs can operate reliably at ambient temperatures ranging from -40 °C to 125 °C. The MCUs come with standard serial communications interfaces, as well as digital-to-analog converter (DAC) and analog-to-digital converter (ADC) functions to facilitate high-speed and secure connections with sensors, displays and other external modules. The wide 1.6V to 5.5V input voltage range enables low-voltage, low-current operation and allows noise immunity, making the R9A02G021 ideal for battery-powered devices.

The R9A02G021 RISC-V MCUs are fully supported by Renesas’ e² studio Integrated Development Environment (IDE), offered to customers at no cost. The comprehensive toolchain includes a code configurator, the LLVM compiler and a fast prototyping board (FPB). Complete development environments are also available from Renesas’ partners: IAR with its Embedded Workbench IDE and I-jet debug probe, and SEGGER with the Embedded Studio IDE, J-Link debug probes and Flasher production programmers. Supporting documentation includes the FPB user manual, a Getting Started guide, schematics, Bill of Materials (BOM), and Gerber files.

The R9A02G021 RISC-V MCU is available today through global distributors, along with the FPB, software and development tools.

https://www.renesas.com/MCUs

Written by Annie Shinn

> Read More

Microchip expands TrustFLEX family with CEC1736 Real-time Platform Root of Trust Devices

As technology and cybersecurity standards continue to evolve, Microchip is helping make embedded security solutions more accessible with its CEC1736 TrustFLEX devices. The CEC1736 Trust Shield family is a microcontroller-based platform root of trust solution enabling cyber resiliency for data centres, telecom, networking, embedded computing and industrial applications. Now, as part of the TrustFLEX platform, the devices are partially configured and provisioned with Microchip-signed Soteria-G3 firmware to reduce the development time needed to integrate platform root of trust. These devices also help fast-track the provisioning of required cryptographic assets and signed firmware images, simplifying the process of secure manufacturing as required by the National Institute of Standards and Technology (NIST) and Open Compute Project (OCP) standards.

Specifically designed to meet NIST 800-193 platform resiliency guidelines, as well as OCP requirements, CEC1736 TrustFLEX devices can support security features necessary to enable hardware root of trust across various markets. The Trust Platform Design Suite tool will allow customers to personalize platform-specific configuration settings, including unique credentials, to support any application, host processor or SoC that boots out of an external SPI Flash device to extend the root of trust in the system.
Modern firmware security features enabled on the CEC1736 TrustFLEX—like SPI bus monitoring, secure boot, component attestation and lifecycle management—can keep both the pre-boot and real-time (time of check and time of use) environments shielded from both in-person and remote threats.
The highly configurable, mixed-signal, advanced I/O CEC1736 controllers integrate a 32-bit 96 MHz Arm® Cortex®-M4 processor core with closely coupled memory to offer optimal code execution and data access.
The CEC1736 TrustFLEX Configurator, part of the Trust Platform Design Suite, provides a visual view of different use cases to select, configure and generate a provisioning package for development, prototyping and production. The CEC1736 development board is equipped with a socket for easier evaluation and development.

https://www.microchip.com

> Read More

Infineon announces the industry’s first wide input voltage hot-swap controller for telecom infrastructure

Infineon is expanding its XDP digital power protection controller product family with the XDP700-002, the industry’s first -48 V wide input voltage digital hot-swap controller with a programmable safe operating area (SOA) control designed for telecom infrastructure.

It boasts superior current reporting accuracy of less than ±0.7 percent, enhancing the system’s fault detection and reporting accuracy. Furthermore, the product features boost-mode control technology for safer turn-on of field-effect transistors (FETs) in systems with non-optimal SOA. This new member of the XDP product family is tailored for a spectrum of telecom applications, including remote radio head power, base station power distribution, active and passive antenna systems, 5G small cell power, and telecom UPS systems.

The XDP700-002 employs a three-block architecture that combines high-precision telemetry for monitoring and fault detection, digital SOA control optimised for power MOSFETs, and integrated gate drivers for n-channel power MOSFETs. The XDP700-002 operates within an expansive -6.5 to -80 V input voltage range and can withstand transients up to -100 V for 500 ms, delivering current and voltage telemetry with a remarkable 0.7 percent and 0.5 percent accuracy respectively. It features precise PMBus compliant active monitoring for enhanced system reliability. A programmable gate shutdown during severe overcurrent (SOC) ensures robust shutdown operation within just 1 µs. The advanced closed-loop SOA control ensures higher MOSFET reliability, and the fully digital operating mode minimises the need for external components offering a compact solution making it an optimal fit for space-constrained designs in a cost-effective way.

With options for external FETs selection and a one-time programmable (OTP) option, the XDP700-002 offers flexibility for programming faults and warnings detection as well as de-glitch levels for various usage models. Its analog-assisted digital mode offers backward compatibility with legacy analog hotswap controllers. By offering robust functionality and adaptability, the XDP700-002 exemplifies Infineon’s continuous commitment to innovation and system reliability in telecom infrastructure.

https://www.infineon.com/xdp700-002.

> Read More

New Renesas MCUs with high-resolution analog and Over-the-Air update support

Renesas has introduced the RA2A2 microcontroller (MCU) Group based on the Arm Cortex-M23 processor. The new, low-power devices offer a 24-bit Sigma-Delta analog-to-digital converter (SDADC), and an innovative dual-bank code flash and bank swap function that make it easy to implement firmware over-the-air (FOTA) updates for smart energy management, building automation, medical devices, consumer electronics and other IoT applications that can benefit from firmware updates.

The RA2A2 devices offer multiple power structures and voltage detection hardware to realize energy-efficient, ultra-low power operation as low as 100 µA/MHz in active mode and 0.40µA in software standby mode. An independent power supply real-time clock extends battery life for applications requiring long lifetime management in extreme conditions. The new MCUs also offer AES hardware acceleration, a high-precision (±1.0%), high-speed on-chip oscillator, a temperature sensor, and a wide operating voltage range from 1.6V to 5.5V.

RA2A2 MCUs contribute to the digitalization of conventional systems with key features including high-level analog sensing, FOTA support, 8KHz/4KHz hybrid sampling, and AES hardware accelerator functions. When the end-systems are digitalized, it is possible to analyse individual systems status seamlessly for further energy-efficient, streamlining system operation. For example, next generation smart electricity meters with Non-Intrusive Load Management (NILM) technology enable energy consumption monitoring based on detailed analysis of the current and voltage of the total load. The adoption of smart meters with NILM is the most cost-effective and scalable solution for increasing energy efficiency and lowering energy consumption.

The new RA2A2 Group MCUs are supported by Renesas’ Flexible Software Package (FSP). The FSP enables faster application development by providing all the infrastructure software needed, including multiple RTOS, BSP, peripheral drivers, middleware, connectivity, networking, and security stacks as well as reference software to build complex AI, motor control and cloud solutions. It allows customers to integrate their own legacy code and choice of RTOS with FSP, thus providing full flexibility in application development. Using the FSP will ease migration of RA2A2 designs to larger RA devices if customers wish to do so.

https://www.renesas.com/RA2A2

> Read More

About Smart Cities

This news story is brought to you by smartcitieselectronics.com, the specialist site dedicated to delivering information about what’s new in the Smart City Electronics industry, with daily news updates, new products and industry news. To stay up-to-date, register to receive our weekly newsletters and keep yourself informed on the latest technology news and new products from around the globe. Simply click this link to register here: Smart Cities Registration